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Abstract

Medical research has long strived to gain an insight into the inner workings of human body.
Making light on what is going on behind the scenes of the body’s functions enables to better
diagnose, treat and to get inspired by the complicated mechanism that nature has created
and optimized through millions of years. The study presented in this thesis dives into the
multidisciplinary topic of Predictive Simulation, a method that can be applied to synthesize
human-like gait patterns. This is done by establishing a bottom-up model of the human
locomotor and optimizing it for high-level objectives such as minimum effort per distance
travelled. The topic of Predictive Simulation is explained through a close-up of its main sub-
systems: Mechanical Model, Predictive Controller, Simulator, Optimizer and Objective Function.
The freely available software package PredictiveSim by Dorn et al. (2015) forms the basis of this
study, both through a series of experiments but also as a platform to extend upon. PredictiveSim
is a ready-made functional system that combine all components necessary for reaching a state-
of-the-art human-like gait pattern. The software relies on a reflex-based parametric controller
with 77 design variables, which relate sensory input to muscle activation. When the parameters
are optimized these enable the system to perform continuous autonomous walking with inherent
balance. The software is studied at first and subsequently extended in order to increase its
functionality. The new functions include Optimization with Perturbation, Supraspinal Control
by varying parameters during simulations and the inclusion of Blind Random Search as
an alternative optimization algorithm. The experiments are performed through a series of
optimizations and simulations with a range of varying speeds and perturbations. The resulting
design parameters are analysed using Machine Learning and Principal Component Analysis
to investigate potential underlying patterns. Several tendencies are found which suggests that
systems like these, while normally requiring large amounts of computing power for optimizing
variables, may benefit from applying Data Mining techniques to approximate or predict solutions
beforehand.
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Synopsis (in Danish)

Medicinsk forskning har længe søgt insigt i de indre mekanismer i kroppen. Denne indsigt gør
det muligt at udføre bedre diagnoser, behandle og blive inspireret a det komplekse maskineri
som naturen har skabt og optimieret gennem millioner af år. Projektet der præsenteres i
denne opgave dykker ned i det tværfaglige emne om Predictive Simulation, en metode som
kan benyttes til at synthetisere menneskelignende gang-mønstre. Dette udføres gennem en
bottom-up model af det menneskelige bevægeapparat, som optimieres i forhold til abstrakte
formålsfunktioner der f.eks. søger at minimere energiforbrug per strækning. Emnet Predictive
Simulation bliver forklaret ved a dykke ned i dets centrale under-systemer Den mekaniske model,
det prædikative kontrol system, Simulatoren, Optimerings systemet og formålsfunktionen. Det
frit tilgængelige software PredictiveSim af Dorn et al. (2015) danner grundlaget for dette
studie, både gennem en serie eksperimenter men også som en grundlæggende platform til
videre udvidelse. PredictiveSim er et eksisterende og funktionelt system der indeholder alle
de værktøjer der skal bruges for at opnå State of the Art menneskelignende gang-mønstre.
Softwaren bygger på et refleks-baseret parametrisk kontrol system med 77 design parametre, som
forbinder sensorisk indput til muskel aktivering. Når parametrene optimeres tillader de system
at at udføre continuær autonom gang med indbygget stabilitet. Softwaren bliver i første omgang
undersøgt og efterfølgende udvidet for at øge dens funktionalitet. De nye funktioner inkluderer
at optimere med forstyrrelser, at styre refleks-parametrene med signaler fra hjernen samt at
benytte en Blind Random Search som alternativ optimerings algoritme. Eksperimenterne bliver
udført gennem en serie optimeringer og simuleringer med en række a varierende hastigheder
og forstyrrelser. De resulterende design parametre bliver da analyseret vha. Machine Learning
og Principal Component Analyse, for at undersøge potentielle underliggende mønstre. Flere
tendenser bliver fundet, hvilket antyder at systemer som disse, som normalt kræver meget
computer kraft for at finde variablene, potentielt kan drage fordel af at benytte Data mining
teknikker til at approksimere eller forudsige løsninger.
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Word List

• Ascending Signals: Signals ascending down the spinal column, originating higher up.

• Supraspinal: Signals originating above the spinal column

• In-Vitro: Test-tube experiments

• In-Vivo: Within the living. Experiments performed on live beings

• Stimulation: Signal that stimulates eg. a muscle to activate

• Excitation: Signal that makes a neural response easier

• Inhibition: Signal that makes a neural response harder

• Feedforward: Signals originating from a centralized controller that is directing

• Feedback

• CPG: Central Pattern Generators

• GRF: Ground Reaction Force

• Proprioception: Feature/Center of the brain that handles relative position of all limbs to
each other

• PCA: Principal Component Analysis, machine learning algorithm

• EVR: Explained Variance Ratio, how much of the overall variance that one particular
PCA axis can account for.

• COM: Center of Mass
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Chapter 1
Introduction

Gaining insight into the inner workings of the human body is a long standing goal of medical
research. Knowing what is going on underneath the hood enables us to diagnose, treat and
get inspired by the complicated mechanism that nature has created and optimized through
millions of years. Studies of the locomotor through biomechanics is already widely used to
treat disorders and disabilities as well as to guide surgeons before operations and estimate the
outcome.

Human gait consist of a complex pattern of muscle stimuli orchestrated by the nervous
system, the nature of which is difficult to measure experimentally due to the high amount of
signals that need to be recorded simultaneously. Gait studies in biomechanics rely heavily on
clinical data of kinematic measurements as well as muscle activation by electromyography (EMG)
and to some extent tendon force measurements, when possible. However, many limitations
prevail which to a large part is based on lack of sufficient data and understanding of the
underlying circuitry of the nervous system. When exploring the circuitry and functions of the
nervous system, acquiring clinical data often requires invasive methods that in many cases are
not suitable for human trials (Miller and Wilson, 2008; Kralik et al., 2001). Furthermore, the
motivation behind movements have been shown to rely not only on physiology, but also on
social and cultural aspects as well as mood and other parameters that are difficult to estimate.
For this reason qualitative research regarding questions on the motivation behind movements
are limited by the variance caused by these unknown parameters.

As an alternative to measuring nerve-signals directly, the muscles serve as a natural amplifier
of their motor neurons. Using EMG recordings these signals can in many cases be acquired
in a non-invasive way. However, this leaves a big black box for the logic behind the stimuli
when only the results can be measured satisfyingly. To gain an insight into this black box
the method of Predictive Simulation can be used (See Chapter 2). Predictive Simulation in
biomechanics is an opportunity that has appeared with the recent advances in computing power
and sophisticated simulation software. Here the structure of the nervous system is explored
by a bottom-up quantitative method. Predictive Simulation consists of several sub-systems
of which the foundation is based upon a so called Predictive Controller. For gait specific
biologically-inspired Predictive Simulation, the Predictive Controller can then be thought of
as a hypothetical model of the human nervous system. This controller provides a circuitry
that can be tuned by performance optimization on a finite sample set, which then enables it
to act accordingly on future datasets. In this way it ’predicts’ what action to take based on
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on data that it has never seen before. The human nervous system can in theory be expected
to possess similar features of a complex predictive controller given that actions and reactions
are assumed to be extrapolated from previous experience, thus making informed guesses as to
what a feasible response to previously unknown inputs could be. Based on this a Predictive
Controller is sought which can predict human behaviour. The controller is tested by performing
a Predictive Simulation which results in motion data for a model representing the human
locomotor. The motion of this model can then be compared to clinical data for validation of
the controller.

Current Predictive Controllers are able to achieve gait-like patterns essentially by optimizing
the system to move at a certain speed using the least amount of effort possible. Using speeds
within normal human walking (0.8 to 1.8m/s) current systems automatically settles on a
movement strategy resembling human walking. Current state-of-the-art of such controllers are
able to synthesize patterns that resemble the overall structure of human walking on a flat
ground, approaching one standard deviation of clinical data. Using these systems allow access to
a well-defined gait pattern that is synthesized from a bottom-up mathematical model where all
parameters are known, without the need of recorded kinematics. This gives the model no bias
beyond what is included in the components and makes each simulation repeatable, allowing for
investigations that are otherwise impossible in human trials. However, there are many obstacles
yet before a system is able to correctly predict human motion on a wider scale. This pose a large
limitation to current systems. For this reason improving on current Predictive Controllers could
prove useful in many ways including what will happen when abnormal parameters are present,
pre-exploration of hypotheses before expensive clinical trials are required as well suggesting
potential features that are included in a validated model, but haven’t been found in humans
yet. In this way the benefits goes both ways as a Predictive Simulation system may both be
used as a medical tool but simultaneously allow a method for exploring the circuitry of the
nervous system theoretically, by inducing its functions by abstract data instead of measuring
directly. Entering the topic was found to have a steep learning curve as well as requiring a large
amount of time and effort to get started. No overall introduction to the topic of Predictive
Simulation was found in the literature.

This thesis therefore aims to provide a overview by giving a introduction of the basic building
blocks, both in terms of fundamental literature, theories, techniques and software. However, due
to a massive topic relying on theories from several disciplines, this thesis will only provide a brief
overview as well as some select details. While an abundance of complex equations are present
underneath the hood, this will not be documented mathematically but instead explained in
general terms. The present study relies an open source and freely available Prediction Simulation
software package called PredictiveSim by Dorn et al. (2015). This software revolves around a
biologically inspired parametric system that through optimization of high-level objectives is
capable of discovering locomotion that partly resembles human gait. The fact that it is Open
Source poses another benefit where every edit and progression may serve as an additional
steppingstone for researchers to improve rather than recreate.

1.1 Project Objective

Through this thesis three main objectives will be explored regarding the use of Predictive
Simulation for biomechanical analysis of human gait. These objectives are:
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1. Provide a brief overview of the theoretical foundation needed for approaching Predictive
Simulation

2. Establish an accessible and documented basic toolbox for performing Predictive Simulation
of Human Gait

3. Show and analyse initial results obtained from gait synthesis using the PredictiveSim
software

1.2 Approach
The present study was approached by an initial literature study. This allowed narrowing down on
the area of designing and performing Predictive Simulation. Through this process PredictiveSim
was discovered. This is a freely available software package combining all elements needed for
producing a state-of-the-art plausible simulated gait that resembles the overall characteristics
of human walking. The software is made by Tim Dorn and Jack Wang et al. (Dorn et al., 2015)
and published at Stanford University (Further details in Chapter 2). This software then formed
the foundation of the rest of the study. First the software was explored, documented and tested
while a number of extra features were added. Simultaneously an additional extensive literature
study was made specifically on Predictive Simulation. Finally a number of experiments were
conducted using the software and the resulting data was analysed.

1.3 Thesis Structure
This theses first introduces the topic in question in this present chapter. Then the general
theory behind Predictive Simulation is presented in Chapter 2 followed by an introduction to
the Nervous System of the Human Locomotor in regards to designing Predictive Controllers in
Chapter 3. The PredictiveSim software is then described in Chapter 4 including new features as
added during the present study. Chapter 5 presents a consecutive list of experiments grouping
motivation, method, results and summary together for each experiment performed. A few
Further Thoughts are presented in Chapter 6 and a conclusion is made in Chapter 7 along with
a suggestion for future studies.

The Appendix covers a documentation of the resulting extended software as well as some
supplementary sections providing additional details on intermediate steps.

– 3 –





Chapter 2
Predictive Simulation

This chapter introduces the fundamental principles of Predictive Simulation followed by an
in depth explanation of its sub-systems and how they interact. Finally synthesis of gait is
explained by combining the sub-systems and performing a Predictive Simulation.

2.1 The Combined Process

Predictive Simulation is a method that relies on the interplay between the following sub-
systems: Mechanical Model, Predictive Controller, Physics-Simulator, Objective Function and
Optimization Algorithm. These can be related to their human counterparts as follow (A
graphical representation can be seen in Fig. 2.1.

• Mechanical Model: Human Locomotor System, including skeleton and muscles etc..

• Predictive Controller: Nervous System, describing the complex relations between sensory
input and muscle stimuli.

• Physics-Simulator: The surrounding world, enforcing the laws of physics and dictates the
motion outcome of muscle forces.

• Objective Function: Brain, the area that describes an aim and evaluates the feasibility of
a potential manoeuvre in relation to that aim.

• Optimization Algorithm: Evolution and Learning. Targeted curiosity that stimulates the
nervous system to perform different manoeuvres that can then be evaluated by the brain
and ’learned’ if they were successful.

Within the process of Predictive Simulation the Predictive Controller has a key-role by
describing actions and performing them through muscle stimuli. These stimuli then result in
forces applied to the Mechanical Model. The Simulator evaluates these forces by calculating the
resulting motion within the laws of physics and the Objective Function assess its performance.
Finally the Optimization Algorithm teaches the Predictive Controller to stimulate better, as
defined by the Objective Function.
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Figure 2.1: HPredictive Simulation Process Overview

2.2 The Mechanical Model

The mechanical parts of the Human Locomotor can be viewed as a multibody dynamical system
with a large amount of linear actuators. This system consists of 244 Degrees of Freedom (DOF)
with approximately 230 joints. To actuate these there are more than 650 skeletal muscles
whereas at least 70 are involved directly in gait. A mathematical representation of this interplay
of skeleton and muscles is called a musculoskeletal model. This model consists of a number of
sub-models describing limbs, joints and muscle as well as their anthropometric data such as mass,
center of mass and inertia. The model can be as simple or as complicated as deemed necessary
and may contain any combination of known parameters. This includes varying moment-arm
for each joint as well as size, strength, activation and contraction dynamics of each muscle,
soft-tissue approximations etc. Due to computational cost and time required to establish good
models the musculoskeletal model is generally optimized, simplified and specialized for the
question at hand, applying mathematical models that approximate the human counterparts
within an allowable margin of error. This includes lumping of sub-models ie. Lowering DOF by
combining head, arms and spine into a single rigid trunk, removing DOF’s that theoretically
have little impact on the question at hand and combining muscle groups, tendons or a range of
muscle with similar functionality into single muscle-tendon units (See 2.2.1). For 2D motion it
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Figure 2.2: Hill-type MTU schematic (Thelen et al., 2003)

has been found that the core functionality of gait can be described by as little as 9 DOF’s and
16 muscles (Geyer and Herr, 2010).

2.2.1 Muscle-Tendon-Unit

The dynamics of muscles and tendons are normally combined in a Muscle-Tendon-Unit (MTU).
The MTU may vary greatly in complexity. This is in part due to complex activation and
contraction dynamics that human muscles posses. There exist many of such models with varying
complexity, features and dynamics. A common model is the Hill-Type MTU (Hill and Se, 1938)
also known as the 3-element muscle (Fig 2.2). This is made by a Contractile Element (CE),
a parallel elastic element and a serial elastic element. These are parameterized among other
by the Muscle-Tendon Length (LMT ), the Tendon Length (LT ), the Muscle Pennation angle
(αM ) as well as muscle activity (a) which affects the string force provided by the Contractile
Element (Fig. 2.2) Inspired by physiological muscles, the CE includes activation dynamics that
simulate muscle fibre recruitment and relaxation which is shown on Fig.2.3. This describes
the time-dependent development of force as a result of an excitation (step response). The CE
furthermore contains contraction dynamics which simulates the fact that physiological muscle
forces are sensitive to contraction velocity, both in direction and amplitude (See Fig 2.2 for
Muscle Force-Length, Force-Velocity and Tendon dynamics). Further correlation with biological
systems can be achieved by including aspects such as tendon dynamics, however this may cause
a large slowdown as well (Millard et al., 2013). The varying properties of different muscles (as
seen on Fig 2.3) can then be specified by parameters based on clinical data.

– 7 –
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Figure 2.3: Hill-type MTU Twitch Response (Could not determine copyright holder)

2.2.2 Joints and Moment Arms

All rotational joints actuated by linear actuators will include some sort of varying moment arm
which can generally be modelled by a sin() function. In the human body this moment arm
is further complicated by interaction and collision with other muscles, bones and soft tissues.
This results in uneven variations that are difficult to model and linearise. Similar to the MTUs,
the varying moment arms are usually only included if the difference is deemed large enough to
have a significant impact on the results.

2.3 Predictive Controller
The way Predictive Controllers replicate the functioning of human Nervous System is by
describing the inner circuit that relates sensory input to muscle excitation. This includes
describing: Each sensory organ by how they react to the surroundings and what information
they give, all neural pathways that such information travels as well as the logical or neural
decision structure that correlates input to output (See Section 3.6 for a brief overview of
building block that are usually used). To approach the creation of a feasible model, that is both
functional and simplified enough to be possible, a large range of techniques, theories and data
are used. These arise from a range of rather independent disciplines each providing specialized
insight into particular aspects including: computational neuroscience for understanding and
implementing neural networks, biomechanics for specializing in the overall mechanics of the
human body, mechanics for a general understanding of the dynamical systems. In addition
Robotics contribute by to an artificial motion planning, AI and Control Theory. Physiology and
Biology both give insight into plausible features of the human body and finally computer science
provides a means to implement software-related issues and perform physics-based simulations
that can yield explanatory results.

2.4 Simulation
The Simulator has the task of solving the Equation of Motion of the Mechanical Model. During
the simulation process the Simulator progresses through a series of small time steps. At each
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step it evaluates the motion of the Mechanical Model according to both muscle forces and
physics while sending the current state back to the Predictive Controller, allowing it to react
accordingly for the next step. Eventually the result of this operation is motion of the Mechanical
Model.

2.5 Objective Function and Performance Quantification

The Objective Function (Alternatively the Cost- Error or Fitness Function) is established
to evaluate and quantify the performance of a model by yielding a scalar value (From now
on referred to as Fitness). This express a relative number that can be compared to other
evaluations. For biologically inspired Predictive Simulation gait models, the Objective Function
often seeks to describe the assumed inner priorities of the central nervous system (As explained
in section 3.2). This is done in the hopes that the Predictive Simulation system can be made to
make the same decisions for motion planning as that of the human body. To facilitate finding a
solution within a large solution space, it is crucial to formulate the Objective properly. While
maybe only a very limited sufficient solutions exist, this function should help to show the way
by defining terms that gradually leads the solution toward the optimum.

Examples are: If the aim of a simulation is for a person to stand up from a couch and move
through an open door, the objective can be written i several ways. One is by simply defining
success as having passed through the door at the end of the simulation and failing otherwise.
This gives no indication of how close a potential solution is to solving the problem, leaving
the optimizer to guess blindly for each new sample and making a flat fitness function. If the
objective instead was made to give a progressively improved fitness the closer to the door it
finishes, the optimizer would know whether it improved or not, compared to previous samples.
This gives a concave objective function where the optimizer basically rolls down hill to find
the minimum, which is the optimum solution for minimization problems. If local minima exist
these form holes in the surface where the optimizer can get caught before having reached the
actual minimum.

2.6 Optimization

To find the best combination of all parameters an optimization algorithm can be used (Explained
further in 2.6.2). In some cases problems may be approached analytically where the optimum
solution can be calculated directly. This generally concern linear systems. However, for dynamical
gait using biologically-based actuators, the system often turns non-linear where only the simplest
of cases can be solved analytically. Instead an iterative numerical approach may be used. An
optimization example is illustrated on Fig. 2.4 where: Some predefined initial parameters are
simulated to form a motion. This motion is then evaluated by the Objective Function to
establish a measure for performance. A new set of parameters are then defined by an algorithm
in the Optimizer and a new simulation is made and evaluated by the Objective Function. The
new fitness is then compared to all previous simulations and the parameter set with the best
fitness is saved. If the fitness is not sufficient yet the process continues.

This loop can then continue generating new parameter values and evaluating them against
the previous until the achieved performance is sufficient.
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Figure 2.4: Diagram of Optimization Procedure

2.6.1 Performance vs. Bias

Due among other to the dynamics of the Hill muscle, the underactuated aspects of human gait as
well as several others, the system often ends up being highly non-linear and unapproachable by
analytic methods. Solving biomechanical problems also often ends up with a high-dimensional
solution space. This all causes computation time to rise drastically which often is a limiting
factor. For this reason it may be infeasible to include everything in a single model, thus
simplifications has to be made. Due to the complex nature of the human body and the lack of
validated models, it is, however, difficult to know which aspects can be assumed to be driving
or driven of the question at hand, thus making the simplification a difficult task by itself.
Wrong assumptions and simplifications easily introduce bias in the system, which may give
rise to unknown errors or wrong result. Ideally only the aspects backed by clinical data or
validated theories should be specified. However, gaps in between established theories or data
may need to be modelled anyway, to reach a functional system. By using a method such as
Predictive Simulation these gaps are handled by parametric models seeking to explain most
likely connections by different combinations of these parameters. This allow a single model to
represent a large range of functions by simply varying the parameters. An approximation of
the ’right’ values can then be found through optimization. In theory almost everything can
be described by a large enough list of parameters. However, in reality this is rarely feasible
as it would leave too many parameters to optimize. This greatly slows down any iterative
process, due to the solution space expanding exponentially by number of parameters. Therefore
assumptions have to be made to simplify and include as few parameters as possible.
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2.6.2 Optimization Algorithms

There exist a long list of optimization algorithms with a wide range of properties, benefits and
disadvantages. A large part of their differences rely on how many assumptions are made about
the type and shape of the Objective Function, ie: Can the optimum be assumed within specific
bounds, are there many or few local minima, how good do I need to solution to be etc. By
making such assumptions the solution space can be narrowed down, allowing a more focused
search. A simple stochastic optimization algorithm can be made using a so called Blind Random
Search (BRS). This provides a parameter set by generating a random value for each parameter
using a uniform distribution between a set of predefined bounds. This set can then be evaluated
by the Objective Function to find the corresponding fitness and more sets can be made. The
more sets generated the higher the chance of finding a good fitness. However, evaluation may
be computation-heavy which is usually the case when simulation is required. This limits the
amount of sets that can be evaluated within a given time frame. A search algorithm like the
BRS relies on no other preconceptions about the shape and type of the Objective Function
apart from being limited within the parameter value bounds. However, if these are wide or the
problem has a high dimensionality, the possible combinations expands exponentially and the
BRS algorithm may require far too many sets for finding a suitable solution. In this case a more
specialized algorithm can be used, which in many cases uses a bias for narrowing in on where it
’thinks’ that the best fitness may be. This can be achieved in many ways with pros and cons
for each method but if designed well they can show an immense performance improvement
compared to the BRS. However, common to all is that the bias may also cause the algorithm
to get caught in a local minimum with little chance of knowing whether a better fitness can
be found somewhere completely different. The algorithm may not be able to find the global
optimum. This issue introduces a sensitivity to initial conditions where many biased search
algorithms tend to search for solutions around their initial values. In this way the solution
found by the optimizer may therefore change depending on initial conditions, which means
that the solutions are not the global optimum. If the Objective Function cannot be solved
analytically, it is rarely possible to determine if a point is the global optimum or not. As long
as different initial conditions yield different solutions, it is impossible to determine whether the
global optimum has been found.

2.7 Synthesis of Gait
The current State-of-the-Art Predictive Simulation systems can produce gait patterns that
resembles the basic patterns of human gait without relying on recorded data (Dorn et al., 2015;
Dzeladini et al., 2014; Geijtenbeek et al., 2013; Song and Geyer, 2015; Van der Noot et al.,
2015). This conclude in a movement that is only biased by design of the system. In this way the
motion is well-determined and can be replicated over and over again, contrary to most In Vivo
experiments. The synthesis is achieved by combining the mechanical model with the Predictive
Controller which is then optimized based on an objective function that describe the proposed
inner priorities (See Section 3.2 on inner priorities). For gait studies these priorities usually
include a target velocity, an effort term and others such as head stability etc. The optimization
then finds the parameters for the controller that result in the best performance. This happens
to coincide with the overall motion pattern that all humans exhibit, suggesting that current
systems are on the right track. In this way the resulting gait is based on a bottom-up design
approach where every aspect of the model is known and chosen carefully, which certifies that
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the conceived movement pattern is relying only on the included models. Being able to synthesise
gait in this way enables thorough investigations of the underlying mechanisms of gait, where
all data in both the mechanical model and the controller can be probed, plotted and handled
in whichever way needed. Adjustments can then be made and new optimizations performed,
allowing to compare systems and their results with a well-defined difference.
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Chapter 3
The Locomotor Nervous System

This chapter introduces a brief theoretical foundation for biologically-inspired Predictive
Controllers for gait. The key of designing such controllers is in replicating the human locomotor
as far as possible. For this reason much of the theoretical foundation concerns biological insight.

This chapter first gives an overview of biologically inspired gait controller, then explains for
categories which relate to such controllers: Inner Priorities, Wiring and Logic, Muscle Reflexes
and Supraspinal Control. Finally these are combined into a set of biologically inspired building
blocks for creating gait controllers based on biologically feasible modules.

3.1 Biologically-Inspired Predictive Human Gait Controllers
The human nervous system is vastly complex and while select functions have been thoroughly
researched not many facts are known. It is here hypothesised that in order for the human to
be able to do a range of daily routines, a number of features are thought to be present. These
include the ability to:

1. Considering multiple alternative for any action we are could be taking at any point and
deciding on one above the rest.

2. Relating sensory input to a suitable reaction

3. Predicting the outcome of our actions and anticipating sensory input

4. Directing movement based on intentions

5. Orchestrating muscle activation to perform intended movements

6. Adapting to anticipated and unanticipated changes from the environment

Creating a system capable of stable locomotion similar to that of humans is a long standing
goal for robotics. It has however proved exceedingly difficult even to tackle just some of the
points above. For gait studies that are not required to adapt to its environment, the challenge
can be narrowed down to point (5) only. This challenge was approached by Anderson and
Pandy (2001) who is believed to have implemented the first biologically inspired gait controller
able to generate human gait patterns without relying on recorded motion data. This was done
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using dynamic optimization of a high-level objective seeking to minimize metabolic cost of
travel. The optimization was applied to muscle activity of a musculoskeletal model with 54
Hill-type MTU’s. The results were found to correspond to the primary aspects of human gait
data. Their system revolved around direct optimization of muscle activity for each muscle.
This was done by letting the optimizer define the amplitude of a series of node-points over the
timespan of the simulation. Each node-point then described an activity amplitude at a specific
time. This enables approximating patterns seen from EMG measurements of muscle activity.
While this system allowed any muscle activity that could be described by the given node-points,
the amount of node-points needed was relying on the total timespan of the simulation, which
made long simulations infeasible. Furthermore, each optimization would be specific to the exact
circumstances. This was due to the fact that the result was a series of amplitudes over time,
that could not adapt to changes.

In 2010 Hartmut Geyer and Hugh Herr presented a different model that describe a Predictive
Controller capable of generating stable gait patterns by means of describing the logic behind the
excitations rather than the excitations themselves. This was done by a reflex-model reacting to
sensory stimulus from feet, muscles and posture and relating them to muscle excitations (Geyer
and Herr, 2010). By defining a set of rules on how each muscle should react to a combination
of sensory stimuli and tuning a range of parameters to match a certain speed, they were able
to generate a continuous and stable gait pattern with inherent balance, which was found "to
predict some individual muscle activation patterns known from walking experiments". In this
way Geyer and Herr described a proposed nervous system for their model, as well as trialled
it against human data. This system enabled additional features from the list above including
"Relating sensory input to a suitable reaction" and to some extent "Adapting to anticipated and
unanticipated changes from the environment". Their publication has paved the way for several
other studies including Wang et al. (2012) who extended the controller to automatically realize
a running motion when optimized for higher speeds; Geijtenbeek et al. (2013) who generalized
the walking controller for different morphologies while improving stability to cope with uneven
terrain and external perturbations; Dzeladini et al. (2014) who implemented Central Pattern
Generators (CPG) for performing speed modulations, thus including a means for "Directing
movement based on intentions"; Dorn et al. (2015) who explored walking on inclines while
carrying varying loads; Song and Geyer (2012) who extended the controller by adding a feature
for sending varying parameters to the reflex-controller during simulation, thus enabling speed
changes;Song and Geyer (2015) who extended this further by added even more capabilities
for "Directing movement based on intention" enabling turning, walking, running, walking on
stairs, accelerating and deceleration etc. All of the mentioned studies have furthermore explored
different biologically-based hypothesis’ that through experiments have been shown to either
improve or decrease correlation with human data. CPG’s as used by Dzeladini touch upon a
paradigm parallel to that of the reflex-based model, where gait patterns are believe to stem
from groups of neurons in the spinal cord, that generate continuous patterns which can be
modulated. While CPG’s have been found in other mammals and proved to be capable of
generating gait patterns without connection to the brain, these have yet to be observed in
humans. This thesis makes no assumptions as to which, if either, of the two paradigms are
correct. However, the present study is based upon research that derive from the reflex-based
controller model proposed by Geyer and Herr (2010) using Dorn et al. (2015) as the starting
point.

The model proposed by Geyer and Herr (2010) is based on some physiological principles
as well as a functional analysis of legged dynamics. In this way the capabilities of the nervous
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system were evaluated and sought recreated by any means possible, where biologically feasible
methods were preferred rather than required. Their model is based on a controller that is
entirely feedback based, which corresponds to physiological reflex loops. However, nu literature
currently supports that humans should be able to walk on reflexes alone (See Section 3.3).
In this way all muscle activations are a direct result of feedback from one or more sensory
organs, relying only on muscle activation dynamics and neural transmission delay for timing.
The sensors used include foot contacts (mechanoreceptors), internal muscle sensors (Golgi
and Spindle), as well as certain arbitrary joint and limb angles, which can be thought of as
vestibular and proprioceptive senses. These sensors are all connected to muscles by a range
of logical circuits, Proportional (P), and Proportional-Derivative (PD) controllers that either
excite or inhibit different muscles (see fig 3.1). Each circuit is parametrized by values such as
gain, Kp and Ki as well as target values for the P and PD controllers. The actual values of
these are unknown but the controller is designed based on the hypothesis that there exist a
combination of these parameters that can result in coordinating a gait pattern autonomously.

Designing such controllers take a lot of work but can be approached as a way of reverse
engineering the muscle activity. This can be seen as a black box where input is all the sensory
organs, which are fairly well understood and output is muscle activity. The job is then to
connect these using biologically plausible methods in order to to replicate muscle activation
dependent on estimated input sensory information (See Building Block in Section 3.6). I.e.
If the design were to be founded on clinical data a sample could be recorded with muscle
activations and length variations as well as corresponding reaction forces from the ground.
These would then be sought correlated by means of biological building blocks (See Section 3.6).
Each building block possess a different response to input. If, for example, consistent patterns
are found where one muscle activation is found to increase along with another muscle being
rapidly lengthened then these could be related by a positive Length-Feedback. If other relations
are found that appear consistent during only certain phases of movement, then ’states’ can be
added that can change behaviour of such building blocks. For stance and swing phases such a
state could be implemented by connections relating the activation of weight-carrying muscles in
each leg that then serve as reciprocal inhibition of other connections and consequently changing
the gain of of some connections based on how much each leg is currently carrying (The whole
body weight during stance and leg-weight during swing). A similar system is included in the
controller by Song and Geyer (2015). Each of these building blocks now forming a controller
are then tuned by some parameters. Finding the combination of these values that give the best
walk pattern is then the primary aim for optimization of gait controllers.

In Geyer and Herr (2010) 2 states are furthermore specified, separate for each leg. These
allow the system to trigger different sets of parameters depending on whether each leg is
currently in it’s swing phase or stance phase. The states are triggered by whether or not foot
contacts are touching the ground. In this way the overall circuitry of the model is within
reasonable proximity of what is known from physiology, where a few liberties are taken that
currently have little to no foundation in literature or clinical data. However, the model generates
gait patterns nonetheless and has established the foundation for others to improve upon.

3.2 Inner Priorities

Realizing why the human locomotor moves as it does is a key to understanding how it work.
The particular movements of a human can be thought of as the product of the capabilities of the
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Figure 3.1: Geyer and Herr Reflex Controller (Geyer and Herr, 2010). F+ and F- describes
positive and negative Force Feedback where L+ and L- describe positive and
negative Length-Feedback. Arrows show where the input originates and which
muscles the output stimulates. The torso angle is controlled by a PD-controller
which stimulates multiple muscles simultaneously.

body as well as a constant prioritizing that choose certain actions over other. From a robotics
point of view, this problem if often described as optimal control, which all-things-considered
provides the best solution to the task at hand. While humans are not logical machines and may
occasionally choose sub-optimal solutions, the optimal control problem is believed to be a good
estimate statistically (Künzell et al., 2013). To approach the question of why humans move
as they do, Predictive Controllers are used as a means to test different rules or objectives by
simulation. While it is unlikely that a single objective can serve as the definition of optimal
control for all tasks, looking for what may be of most importance is a good starting point. In
biomechanics several of such objectives have been explored already. The most popular objectives
concern the effort required to perform a certain task. Examples include:

• minimization of the sum of squared torque around all joints

• minimization of sum of squared muscle activity

• minimization of metabolic cost per length travelled

• minimization of muscle fatigue
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These objectives all express the notion that the human body is believed to move using the
least amount of effort, thus saving energy for other actions. As is also seen, effort can here be
expressed in several different ways which have all been found to result in different movement
strategies. A comparing review was made by Ackermann and van den Bogert (2010), which
concluded that muscle fatigue is the one generating the muscle activity that most resembles
humans. This suggests that the human decision process value endurance over long term energy
consumption. More generally these objective serve to explain how a problem with many solutions
should be solved best. These types of objectives are often referred to as high-level when the
actual problems are only arbitrarily related to the objective. I.E. where minimizing effort of
the body causes abundant collateral effects on a large range of sub-part. High-Level objectives
are used among other for solving the muscle redundancy problem arising from the fact that
each joint is actuated by several muscles that may be combined differently to achieve the
same torque. Objectives like these arise from informed guessing as well as evolutionary and
medical observations. The mentioned effort minimization may, however, only be a part of it. By
looking at gait adaptations for entering on an un-safe surface it is clear that effort may not
always be the most important. On ice or any other slippery surface the motion pattern changes
drastically and muscles react with a different strategy to accommodate uncertainty (Cham and
Redfern, 2002). Explaining this as well may require a revised objective which includes stability
in some way. The fact that humans appear to somewhat follow a least-effort objective when not
challenged by stability and only changes behaviour when needed could suggest a hierarchical
structure. The combination of effort and stability could then be described as a check list, where
stability is the first in line and effort second. Explained differently the stability term could be
specifying the bounds for the solution space that honour its requirements. These new narrower
bounds are then passed on down the list where effort may find the best solution within those
narrower bounds. Many other such entries are likely to exist on such a list, including realizing
current intention, which may to appear beneath stability and above effort. This would mean
that stability is primary, then execution of an intention and finally the action is performed
using the least effort possible.

Beyond that it is well known that skeletal muscles co-activate with their antagonist. This has
to our knowledge not been replicated successfully in simulation yet, apart from being introduced
as an empirical ratio between agonist and antagonist. The nature of co-activation is still up
for debate but potential theories include control of joint compliance and stiffness (Annunziata
and Schneider, 2012). Describing this logically and implementing it in the objective function
could help to investigate the cause of muscle co-activation. Additional objective terms may
also include minimization of head-movement during gait, which is induced from empirical data,
and many more can be proposed, ie: minimization of pain, accelerations, impact amplitude,
wear/tear and tissue forces. The two latter could potentially be thought to contradict the
co-activation given that co-activation drastically increases bone-on-bone forces. Based on this it
is clear that the objectives of the nervous system is a complicated matter which may include a
long list of different constraints and criteria, weighted against each other in one way or another.

3.3 Wiring and Logic

The path and dependencies of gait-specific skeletal muscle innervation is much debated. While
the immediate stimulus of lower limbs have been found to originate in the lower spine, the
path and information passed through the descending signals as well as the underlying logic
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behind them are still a mystery. It is logical to assume that the brain is the major player in
most human actions but the questions are to what extent and what are the alternatives.

To differentiate reflex stimuli from everything else, the latter is referred to as supraspinal
input, meaning everything descending from above the spinal column. Furthermore, stimuli
as a direct response to sensory input is referred to as Feedback where stimuli appearing as a
supposed result of intention in the brain and sent out to the muscles is referred to as Feedforward.
The model suggested by Geyer and Herr (2010) relies entirely on reflexes to generate the gait
pattern.

So far there are no indication in the literature that humans can walk based on reflexes
alone and experiments on patients with spinal-cord injury suggest that feedback integration
is essential for performing gait (Sinkjaer et al., 2000; Dietz, 2002). However, other mammals
such as cats have been shown to be able to walk with a severed spinal cord (Duysens and
Van de Crommert HW, 1998), which suggests that similar functionality could theoretically be
possible for humans. Dzeladini et al. (2014) suggests that a plausible combination could be
that proximal muscles are more directly controlled by the brain than distal muscles, which rely
to a higher degree on feedback.

Geyer and Herr (2010) also introduced states in their controller. While it may appear
infeasible that a biological system would have actual states that are either on or off, it can be
thought of as a reasonable simplification that can explain some of the behaviour of adaptive
reflex loops. A more physiologically feasible model appears to be a reciprocal inhibition of
multiple reflex-loops (Sinkjaer et al., 2000; Geertsen et al., 2011). Seeing this happening in
one part of the body appears to suggest that several logical circuits for each reflex loop can
be combined with varying amplitude thus allowing reflex behaviour modulated by external
stimulus. This adds an important building block to the collection (See Section 3.6).

3.4 Muscle Reflexes

The particular neurology of skeletal muscles are fairly well understood. Beyond the contractile
elements and their supporting constructs, each muscle also contain 2 sensory organs: Muscle
Spindle and Golgi Tendon (Proske and Gandevia, 2012). The Spindle reacts to the current
muscle length as well as lengthening velocity while the Golgi tendon reacts to tendon force.
These two sensory organs provide proprioceptive feedback that is sent both to the brain but
also to reflex loops that for lower-limb muscle are located in the lower spine. These reflex loops
relate the incoming sensory stimuli to produce a resulting stimuli by a simple logical circuit.
For reflexes affecting the same muscle from where the sensory stimuli originates this stimuli is
passed on to the muscle itself through the α-neuron (Auto-muscle reflex). Current literature
suggest that these auto-muscle reflexes all behave in the same way where sensory input from
the Golgi tendon performs inhibitive stimulus on the muscle (Negative force-feedback) and
Spindle stimuli perform excitatory stimulus (Positive length- and velocity-feedback). However,
Geyer et al. (2003) argue that there is a functional benefit for positive Force-Feedback which
could suggest that it should not be left out of consideration. The same sensory stimuli are also
thought to affect other muscles where changes in one muscle sends an excitatory or inhibitive
stimulus to another muscle. While these connection are difficult to verify experimentally, they
provide a beneficial building block for designing a functional controller.
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3.5 Supraspinal Control
Supraspinal is the general term for signals originating above the spinal column, including the
brain. These signals are generally believed to play an important role in both motor learning
and adaptation to task variations where reflex-loops instead account for short-latency high gain
responses (Wagner and Smith, 2008). Reflex-loops (Also referred to as Feedback) by themselves
provide fast response to perturbations but no ability to change behaviour, ie. stopping or
starting to walk, jumping, turning etc.(Wagner and Smith, 2008).

Current systems that combine Feedforward and Feedback for gait controllers include: Dzela-
dini et al. (2014) who suggests a model where feedforward acts as an observer of the movement,
thus enables predicting sensory inputs which allows the model to realize when unexpected per-
turbations appear; Song and Geyer (2012) who describes a method that implements supraspinal
control by varying reflex parameters for achieving gait speed variations; (Song and Geyer, 2015)
who developed this approach further where feedforward provides adjustments to reflex gains as
well as foot position, which they show as being sufficient for performing stable gait patterns as
well as producing a number of different behaviours. These include turning, walking on stairs
and speed change; Van der Noot et al. (2015) who combined CPG and reflexes to perform
stable gait patterns on a robot, where speed variations were controlled by phase change of
the CPG. Mugge et al. (2010); De Vlugt et al. (2002) both suggest that feedback parameters
such as force and position are constantly tuned dependent upon experienced perturbations.
Forbes et al. (2011) shows that reflex parameter modulation appear to be task-specific. An
important role of supraspinal feedforward is also found in impedance variation, where humans
have been shown to increase locomotor impedance when exposed to uncertain terrain and
lower it again when back on stable ground (Takahashi et al., 2001), ie: when walking from land
onto a frozen lake, or when briefly slipping in a soggy fallen leaf the body quickly establishes
a recovery strategy after which a more careful gait is performed until the terrain is deemed
trustworthy once again. For that reason supraspinal control is believed to be a key feature
allowing further investigations in the adaptive control. In order to achieve such impedance
adaptation, stability needs to be quantified. Exactly how this is done is still up for debate
and is a another topic by itself. Roboticists often use a so called Zero-Moment Point (ZMP)
that the motion planning algorithm aims for. Other methods include limit cycle walking where
global stability is considered, allowing for temporary off-balance stages that are later brought
back into balance. Geyer and Herr as well as all the controllers in this thesis fall within limit
cycle walking.

3.6 Physiological Building Blocks
For approaching design of a biology-based Predictive Controller a number of potential building
blocks are here defined. These should be seen as a very rough representation of some functions
that are believed to exist in biology and provide a fundamental modular structure for generalizing
controller design. The list is far from exhaustive and entries such as P/PD-Controllers and
States may not be directly based on biology but have been included based on their appearance
in the Predictive Controller of the present study

• Senses

– Mechanoreceptors (Touch)
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– Golgi Tendon (Muscle Tension)
– Spindle (Muscle Position and Speed)
– Proprioception (Relative Location of Limbs)
– Vestibular System (Orientation)

• Logic
– Neuron (Firing Threshold)
– Constant Value
– Sum (Neuron firing)
– Gain (*)
– Inhibitory (-)
– Excitatory (+)
– P-Control
– PD-Control
– Neural Transmission Delay

• States (Reciprocal Inhibition)

Using these building blocks several control laws can be made, Ie. Positive Force-Feedback
is a Golgi Tendon connected to a gain with excitatory output, PD-Controller can receive Kp

and Kd from other control laws or define them as Constant Value, an angular control signal
can come from Proprioception or the Vestibular system and the target can be defined similarly
with gains inserted appropriately.

3.7 Discussion on Biologically-Inspired Predictive Simulation
One problem common to all optimization methods that seek to replicate life is that only the
question at hand is evaluated. For this reason the solution found will at best ever be the optimal
solution for that particular problem. A different solution could be required when asking the
same model to solve a different problem. While humans definitely adapt to the task at hand,
the underlying system is likely not to change. If the structure of this system is the aim of the
optimization, the solution should therefore in theory not change when given a different task.
This can be described by evolutionary observations where the system is expressing the best
solution to the overall requirements given by the task and all current and previous experiences.
Evolution has been found to make compromises where the requirement of performing different
tasks are incompatible. This is done while maintaining ideal solutions for both. It is here
assumed that the evolution of the locomotor system strives for optimizing energy efficiency,
survival and diversity in capabilities.

If instead the optimization is only asked to find the optimal solution for gait on even ground,
the outcome may be a strategy that is actually better than humans, thus being super-optimized
so to speak. This happens as a result of the model being allowed to specialize in a single task
instead of being required to do everything a human needs to be able to do. This issue is to
our knowledge not possible to solve completely, but suggests the importance of performing
optimization in a rich environment over a broad range of tasks in order to achieve the most
human-like behaviour. Some have approached the issue by consecutive optimization of a list of
tasks and objectives (De Lasa and Hertzmann, 2009)

– 20 –



Chapter 4
Software Implementation

PredictiveSim is a free and open source software system for performing Predictive Simulation
of human gait. The system was released in April 2015 by Tim Dorn and Jack Wang et al. from
Stanford University. This was along with their publication "Predictive Simulation Generates
Human Adaptations during Loaded and Inclined Walking" (Dorn et al., 2015). PredictiveSim was
chosen as the foundation of this project as it contains all the fundamental tools for performing
predictive simulation. This section provides an overview of the software. Further details on
specific areas are given. Finally a list of additional features are implemented and presented. For
an overall documentation see Appendix A.

4.1 PredictiveSim: Software Presentation
PredictiveSim was developed as a tool for investigation of a single controller capable of achieving
good performance when carrying loads and walking on inclines. Using this system Dorn et al.
were able to generate stable unloaded walking where "joint angles and moments were generally
in agreement with human walking" (Dorn et al., 2015). The system is based on (Geyer and Herr,
2010) using similar reflex-based controller with some differences that allow walking on inclines
and simulating varying backpack loads. Similar to the system presented in Chapter 2. Five
sub-systems are present: Model, Controller, Optimizer, Simulator and Objective Function, (See
fig 4.1 for overview). The system is a software package written in C++ and makes extensive use
of both SimBody (Sherman et al., 2011) and OpenSim (Delp et al., 2007) through their API.
The former which is a multi-body dynamics engine and the latter an extension that adds tools
specifically for biomechanical analysis. Simbody is used as its Simulator and the remaining
sub-systems will be explained in Section 4.1.1 through 4.1.4. A summary of features, input and
output files are given in Section 4.1.5.

4.1.1 Model: Musculoskeletal Model
The Musculoskeletal model used in this system is defined in the osim format (OpenSim model
description format (Delp et al., 2007)) and is limited to 2D movements in the sagital plane.
The model is set to a height of 1.88m and a mass of 80kg. It consists of 7 limbs, 9 DOF, 4 foot
contacts and 16 MTU’s The limbs are: Pelvis and left/right of Thigh, Shank and Foot. The
model furthermore defines a ground plane as coordinate reference. Each limb is then connected
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Figure 4.1: PredictiveSim System Diagram (Dorn et al., 2015)

by a planar joint and the Pelvis is able to translate on the x- and y-axis, resulting in 9 DOF
(See fig 4.1). The 4 foot contacts are modelled as contact geometry on the heel and toe of each
foot, using Hunt-Crossley forces (Hunt and Crossley, 1975) to estimate friction, force magnitude
and direction. The 16 MTU’s of PredictiveSim are based on a custom MTU made by Tim Dorn
and Jack Wang which resembles a Hill-type muscle as explained in section 2.2.1.

4.1.2 Controller: Reflex Model

The controller is largely based on (Geyer and Herr, 2010) which explains a purely feedback
based system where a list of static parameters and initial conditions generate a walking gait. 3
main feedback control laws are used: Force Feedback, Stretch Feedback and PD Control. Each
law is applied multiple times across all muscles, connecting either from one muscle to itself, from
one muscle to another muscle or combining input from a list of muscles, aiming for a certain
feature angle. Each applied law has a list of free parameters that are found by optimization.
The controller furthermore incorporates 3 different states triggered by foot contact. These 3
states describe the phases of stance, swing initialization and stance preparation respectively and
switches between different reflex behaviours. Further details and exact equations can be found
in (Dorn et al., 2015). The controller relies on a total of 77 parameters whereas 70 are being
optimized as default. 18 parameters describe initial condition, 53 concerns the the controller
parameters and the last 6 describe the Hunt-Crossley contact force. All parameters are listed in
Appendix A.6.

4.1.3 Objective Function

As mentioned in Chapter 2 the Objective Function evaluates a simulation and provides a scalar
value that quantifies relative performance. The Objective Function as given by (Dorn et al.,
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2015) is defined by:

R = wfailJfail + wvelJvel + wheadJhead + weffortJeffort

This incorporates penalties for failing, velocity, head movement and effort. Each w specifies a
weight factor and J specifies a penalty function. Failing is in this case when the COM drops
below 0.7m and the penalty is lowered the longer the simulation lasts. This is done to facilitate
the sliding scale where the longer it balances the better it is, despite it eventually falling.
Velocity is defined as the difference between average velocity and target velocity specified by
the user. This term also includes an error threshold of ±0.05m/s to allow a tolerance where
the term gives zero penalty. Head accounts for the forward movement of the head relative to
the COM, inspired by the apparent tendency for humans to stabilize the head, likely due to
maximizing precision of the visuals and stabilizing the vastibular system. Effort is approached by
a model that approximates the overall metabolic cost of moving. This includes basal metabolic
cost as well as cost of activating individual muscles. This term also includes a penalty for
hyperextension which is the sum of squared joint limit torques. This gives penalty if motion
is hitting the mechanical limits, probably approximating pain. The specifics can be found in
(Dorn et al., 2015).

4.1.4 Optimizer: CMA-ES
The optimization process is initiated by a number of values defined in a Matlab file. These
describe the initial values of all parameters as well as which parameters are to be optimized
while defining the bounds of each parameter. It was deemed outside the scope of this thesis to
analyse further why these exact parameters are used, as they have been shown to work through
Dorn et al. (2015).

The Optimizer uses a stochastic optimization algorithm called Covariance-Matrix Adaptation
- Evolution Strategy (CMA-ES), presented in Hansen (2006). This algorithm is a derivative-
free evolutionary algorithm intended for non-linear and non-convex continuous functions.
Furthermore CMA-ES makes only few assumptions about the objective function, using the
rank of each objective evaluation as a means to predict where the next likely improvement
may occur. The algorithm work on a specified number of parallel processes taking a set of
initial values. Multiple lists of parameters are then generated by applying a gauss-distributed
perturbation to these values. The perturbation is scaled for each parameter by a covariance
matrix (CM) and a step size. The CM estimates a variance based on previous history and and
is updated for each iteration. The step size defines the general variance of the perturbation
and is progressively decreased based on a dampening factor. The resulting parameters are
then evaluated by an objective function yielding a fitness that define the rank for each process
compared to the other parallel processes. A set number of "parents" then define the number of
highest-ranked parameter sets that are to be kept. The mean values of these parents are then
used as the new initial values and the loop starts over. This process runs until it is stopped
either by reaching a desired fitness or when a maximum amount of iterations has passed.

This optimizer is then applied to the objective function (See equation 4.1.3) as a minimization
problem:

min(R(~P ))
where ~P is a vector containing all optimization parameters, (in this case 70). During the
optimization the algorithm is finding the combination of the 70 parameters yielding the lowest
possible fitness value.
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4.1.5 Summary on Software Description

When compiled the system offers Optimization, Simulation and Visualization. These are
explained below and further details can be found in the documentation, Appendix A.

Optimization: This is performed by specifying among other target velocity, time span of
simulation, step size and amount of cores to run the optimization on. Out of these cores (Master)
will be dedicated to handling the optimization algorithm, sending out parameters to test on
the rest of the cores and keeping track of which solution is the current best. The rest of the
cores (Slaves) will then receive parameters, perform simulations, evaluate them and send back
the fitness value. Each time the master receives a fitness from the a slave that is better than
the previous best, a control file (result_itr[iteration number].sto) is saved out containing the
parameters that caused this improved fitness.

Simulation: This is both part of the optimization process but can also be performed individ-
ually. This is done by specifying a control file as made by the optimization process as well as a
simulation time. This will apply the parameters specified in the control file to the controller
and initiate a simulation based on this. The resulting data will be saved out as a simulation file
(_results.sto). This file contains a time series of data including joint angles, muscles activation,
ground reaction forces, joint torques and many more. Each of these are specified by a value
defined for each small time step through the range of the simulation.

Visualization: can be done either during the simulation or as a subsequent action where
a simulation file is previewed. This shows a window where the mechanical model is moving
according to the simulation data.

4.2 Adding Features
Four new functional features were added to PredictiveSim. This was done to enable more
flexibility in the ability to find and combine a wider range of parameters. These four features
are explained in the following sections. First the ability to save out all simulations to a single
file, then perturbations were added as a way to optimize while perturbing the simulation,
thirdly Supraspinal Control was added which allow to send commands to the controller during
simulation and finally Blind Random Search was added as an alternative optimization algorithm
enabling unbiased search through the solution space.

Parallel to this a number of python tools were made that allowed automatic handling,
organization and visualizing of data generated by the updated software. Further tools were
made to automate repetitive tasks involved in performing batch simulations, monitoring progress
and optimizing performance (See Appendix B.2.5).

4.2.1 Save All Simulations

A feature was added that allowed for saving out every single simulation performed during
an optimization. This was in contrast to the default behaviour where only simulations that
improve upon previous best solutions was saved out. The function was implemented by saving
out all parameters and the resulting fitness as singe lines in a CSV file. This feature could then
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be enabled by stating "-saveAllSim" as an input argument when launching an optimization.
Retaining all samples enabled further statistical methods for analysing the solution space.

4.2.2 Perturbations

Perturbations are often used in motion optimization as a means to quantify and control stability.
Controllers optimized without perturbations are likely to exhibit a very low tolerance to
disturbances which in most cases is undesirable. Adding perturbations allow the optimization
to find an optimal solution while maintaining a margin of stability. For this reason it was
deemed important enough for being added as a built in feature, allowing a broader range of
experiments to be conducted including stability as a factor. This feature was implemented
using an OpenSim Prescribed Force (Delp et al., 2007). To do this a new model file was made
with an added entry for a Prescribed Force (Humanoid2d_perturb.osim). This was set to
act horizontally on the torso, 10cm above the COM, with the perturbation force initiating 2
seconds in and lasting for 1 second with instant effect. The amplitude of this force was set to:
F = 50 ·pertAmp where pertAmp could be specified from the command line using the argument
−pertAmp [amplitude] (See PredictiveSim Documentation for more information, Appendix
A). The addition of perturbation allows to quantify stability by the given amplitude that the
system is able to withstand.

4.2.3 Supraspinal Control

Supraspinal control was implemented based on previously mentioned literature in section 3.5.
Inspired by Song and Geyer (2012) ascending signals are thought of as an abstract command
sent to the lower spine where the reflexes perform the actual orchestration of muscle. This was
done by allowing for on-the-fly change of all optimized controller parameters. Given that each
set of parameters makes the model move or behave differently, it was hypothesised that the
supraspinal high-level control could be a command that simply changes the current parameters
or settings in the spinal reflex loops. Ie. using parameters that were found to generate a walk of
1.2m/s and then switching to parameters that were found to generate 1.5m/s. It is speculated
that this mechanism could be a general theory for how the nervous system divide tasks into
layers where all movements in a sense is feedback based but parameters change continuously
based on feedforward signals. This is partly in line with the method applied by Song and
Geyer (2012), however their method involved a simplification of parameters, using a fitted
curve to interpolate between a few parameters only, that showed a strong correlation with
speed changes. The method of the present study applies a whole parameter set. Using a whole
set makes sure that no small variation of thought-to-be unimportant parameters get lost in a
simplification which could turn out to cause unnecessary errors. Beyond that it includes the
ability to use any set directly without prior analysis allowing to use speed and perturbation
interchangeably. However, with no logic behind the variation of parameters, each potential
state has to be optimized separately to find a suitable parameter set for this. It was theorized
that a large amount of optimizations could be performed with N varying parameters such
as speed, perturbations and acceleration, mapping out an N -dimensional space where the
supraspinal input could be made to pick and choose the parameters best suiting the current
intention, considering current state and target state and interpolating values between it’s nearest
neighbours. Song and Geyer (2012), however, identified the need for specialized transition
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settings for variations larger than 0.2m/s. A method for accommodating this was attempted
implemented in the present study but was never finished (See Section 4.2.5)

4.2.4 New Feature: Blind Random Search
As described in section 4.1.4 the CMA-ES algorithm is highly dependent upon it’s first random
sample after which it only searches in the proximity of this. To get a broader look at the solution
space of PredictiveSim a Blind Random Search (BRS) optimization algorithm was implemented
as an alternative to CMA-ES. This was done by applying a random uniform distribution for
each parameter using bounds as specified in the optimizationbound.sto file generated by the
Matlab script (See Appendix A). The resulting method is unbiased and searches the whole
solution space within the given bounds. Command line initiation of BRS instead of the CMA-ES
algorithm was implemented by adding the argument: −brs.

4.2.5 Not Fully Implemented
Optimizing for State Transition Based on new needs deriving from supraspinal control,
a feature for performing optimization for transitions between states was planned. However, due
to technical obstacles and limited time this was never successfully implemented. The feature
involved a method for saving out a full system state of a simulation at any given time. This state
would include all information needed for recreating the same system state in a new optimization.
Along with a feature for loading such state as the initial state of an optimization it was hoped
that transition parameters could be found. An example could be to save out the system state
from an simulation of 1.5m/s at a point after the gait pattern had stabilized. By loading this
state into a new optimization aiming for 1.8m/s and only optimizing control parameters (Not
initial conditions) would then theoretically find the best solution for transitioning from the
initial state into approaching the new target. It would then be an interesting case to see if the
system would be able to perform the whole transition and stabilizing speed when reaching target
velocity, or that a better approach would be to optimize for positive and negative acceleration
which could then be combined for transitions, potentially as an optimization parameter.

Target Acceleration To accommodate optimizing for target acceleration rather than steady
speed another feature was planned. Here the Objective Function was extended to include an
option for targeting acceleration rather than a speed. The feature was implemented and is
potentially working but time did not allow to linger and perform sufficient testing to accept it
as a functional feature.
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A number of experiments were carried our during the course of the present study. Each experi-
ment is presented in this chapter, singularly, according to the following structure: Motivation,
Method, Results and Summary. All experiments concern walking, where different combinations
of input arguments were optimized as well as repetitions of identical situations. The input
arguments in question are: target speed and perturbation.

Each experiment was performed as a series of optimizations on the HPC cluster at DTU.
A single optimization is referred to as an optimization where a related group of separate
optimizations are referred to as an optimization run. This includes when multiple repeated
optimizations are made using same initial conditions (Which are furthermore referred to
as Independent) or when a series of consecutive optimizations are made, where each new
optimization initiates from the previous best solution (Which are referred to as Consecutive).
Multiple datasets were made during the following experiments. These were each given a label and
are reused across several experiments. Each method section introduces their used datasets along
with the label, which will subsequently be used for referring to that data. All optimizations used
default initial conditions as provided by Dorn et al. (2015) and were stopped after reaching 30
consecutive iterations where no further improvement had happened. Furthermore the model file
with added Prescribed Force was used: Humanoid2d_perturb.osim (See Chapter 4 for details).
The Optimum refer to the best solution found during an optimization, which is defined by a
control file including both its fitness and the parameters that caused it.

5.1 System Performance Analysis

Motivation
To get a feeling of how the software behaves in general a system performance analysis was
carried out. This included exploring how an optimization develops, how fast it converges and
whether it arrives at the same solution repeatedly.
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Method
Used Datasets

• default5 : Optimizations: 5, cores: 20, step size: 0.005, target velocity: 1.5m/s, time: 10s,
Optimizer: CMA-ES.

• sampling1d5 : Optimizations: 10, cores: 20, step size: 0.005, target velocity: 1.5m/s, time:
10s, Optimizer: CMA-ES.

• sampling1d5-c80 : Optimizations: 10, cores: 80, step size: 0.005, target velocity: 1.5m/s,
time: 10s, Optimizer: CMA-ES.

Optimization Development: Using dataset default5 the resulting control files for each
improved iteration were plotted showing development of parameter values over iterations (Fig.
5.1)

Comparing Solutions: Using datasets sampling1d5, sampling1d5-c80 the best iteration for
all optimizations were plotted showing the varying parameter values for each individual sample
on the x-axis. Parameters were filtered to only show those with a standard deviation above 0.3
to avoid cluttering (Fig 5.2). Average best fitness of each set of optimizations was calculated.
Dataset [indepSpeed02] was made and then plotted showing parameter values against speed
(Fig 5.3).

Results
Optimization development showed initial fluctuations of the parameter values which was damped
progressively during iterations. While only a representative plot is shown (Fig 5.1), a similar
tendency was evident in all optimizations. The 20 optimizations in dataset sampling1d5 and
sampling1d5-c80 had all appeared to converge and was stopped after 30 iterations, none of them
resembled any of the others by visual inspection. Furthermore, it was found that sampling1d5-
c80 using 80 cores had a mean value of 3.78, where sampling1d5 using only 20 cores had a
mean value of 4.49. Secondary results show that average simulation time when stopped after
30 iterations without improvement was: for 20 core simulation 23.25 hour with a Standard
Deviation (std) of 12.39 hours and for 80 core simulation of 24.97 hours, std of 7.21 hours. It
was also found that parameter variation stay within a narrow range compared to the actual
bounds as specified in the auxiliary files (See Section A).

Summary
It appears that multiple repetitions of the same initial conditions result in unique parameter
combinations, beyond a mere tolerance. This suggest that there exist a large number of local
minima in which the optimizer gets caught. The difference between these can be explained by
the stochastic properties of the CMA-ES algorithm. The difference in average Optimization
development suggested that the optimal solution is sensitive to number of cores independent of
simulation time. This means that a solution found by a 20-core optimization will usually result
in a worse fitness than a 80-core optimization run even when overall core-time is accounted for.
The reason behind this was likely caused by variable population size which in PredictiveSim
is based on number of cores used for optimization. The PredictiveSim initiates by default
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Figure 5.1: Representative plot of parameter value development through optimization. Only
showing the 16 parameters with highest variance out of the total of 70 optimized
parameters

Figure 5.2: Parameter variation of multiple independent optimizations with identical initial
conditions. Including 20 parameter sets, shown on the x-axis
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Figure 5.3: Parameter variation of multiple independent optimizations with varying speed.
Only showing parameters with value std > 0.2

a population that is one less than the core count. This was thought to be for optimization
purposes where such a method makes sure that each core only simulates once before it returns.
The remaining core is allocated as "master" to manage the other "slave" cores. A high number
of cores thus result in a larger population, which can perform a denser search and find more
alternative options simultaneously. For this reason core numbers will be used interchangeably
depending on intention to optimize use of available resources. Important results should be
optimized using 80 cores where subsequent extensions on those may be done using less, usually
around 20.

A new solution is defined as a set of parameters that shows no obvious pattern relating it to
other solutions of similar fitness. Each new solution that solves the same problem using different
parameters was then defined as Solution Strategies. This means that each Solution Strategy
defines a means of locomotion that uses a varying approach to reach a similar performance.

5.2 Comparing CMA-ES and Blind Random Search

Motivation
The CMA-ES optimization algorithm came bundled with PredictiveSim and has been used for
several other studies similar to this. However, with only few notes on why this algorithm was
chosen, a method was sought for exploring its benefits as well as potential disadvantages.

Method
Used Datasets

• cmaesBig: Optimizations: 1, total samples: 394.163, cores: 80, step size: 0.005, target
velocity: 1.5m/s, time: 10s, Optimizer: CMA-ES.

• brsBig: Optimizations: 1, total samples: 495.330, cores: 80, step size: 0.005, target velocity:
1.5m/s, time: 10s, Optimizer: BRS.
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• brsBig-fittedRange: Optimizations: 1, total samples: 85.642, range fitted to CMA-ES
search width, cores: 80, step size: 0.005, target velocity: 1.5m/s, time: 10s, Optimizer:
BRS.

A comparison was made against the Blind Random Search algorithm (BRS) that was
described in Section 4.2.4. Using the new feature of saving out all simulation data (See Section
4.2.1) both a CMA-ES and a BRS optimization was performed (dataset cmaesBig and brsBig).
Their best was fitness was then compared. Inspired by the previous observation that CMA-ES
tend to stay within a narrow range of parameter variation when looking for new solutions,
the range for BRS was sought narrowed down equally. This was done by setting the bounds
of BRS according to the maximum and minimum observed value for each parameter in the
above CMA-ES optimization where all simulations were saved. With the new bounds another
optimization was done using BRS (dataset brsBig-fittedRange) and the results compared to
CMA-ES. Finally the bounds were sought narrowed further. This was done by filtering the new
BRS results so that only simulations with fitness values below 30 was kept. The new bounds
were then set based on the observed maximum and minimum values of this new data set. Due to
the stochastic nature of both algorithms both were compared by histograms of fitness, showing
the full range of fitness along with a zoomed in view between 0 and 30.

Results

Creating the cmaesBig dataset resulted in a total of 394.163 saved simulations with best fitness
of 3.8. brsBig resulted in a total of 495.330 simulations with best fitness of 92.5. Using the
overall maximum and minimum of each parameter from cmaesBig, a new set of search bounds
were made with a narrower range, as seen on Fig 5.4. Using these bounds for another BRS
optimization resulted in brsBig-fittedRange with 85.642 saved samples and a best fitness of 6.9.
The further narrowing of bounds using fitness less than 30 provided a difference of less than
0.1% and for the most parameters much less. No further optimizations were therefor made.
From the histograms of BRS (Fig. 5.6) and CMA-ES (Fig. 5.5) it is seen that CMA-ES has a
much higher density of samples in the lower end of the scale, where BRS is performing many
more simulations that result in high fitness values.

Summary

The performance comparison between CMA-ES and BRS suggest that CMA-ES offers a
significant improvement over BRS when looking for the fastest way to good fitness. If the
bounds of BRS are narrowed down to match the search space of CMA-ES, then performance
increases significantly with BRS though still not matching CMA-ES. However, the fact that
BRS searches a much wider range by default may also prove beneficial. The less than 0.1%
difference of second iteration for narrowing bounds suggests that a fitness values of 6.9 can be
achieved even at the very borders of all parameter bounds. For this reason further investigations
should be made in order to correctly narrow down the search space. It is still possible that
good fitness can be achieved outside those bounds using a radically different strategy. However,
it is assumed that the current resulting strategies resemble human walking enough, so that
radically different strategies can be disregarded.
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Figure 5.4: Specified parameter bounds compared to actual search width of the CMA-ES
algorithm. Based on 350.000 simulations

Figure 5.5: Histogram of Covariance Matric Adaptation. All simulations included
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Figure 5.6: Histogram of Blind Random Search with fitted search bounds

5.3 Differentiating Solution Strategies

Motivation

Based on the discovery that all solutions appeared to be unique (See Section 5.1), a strategy
was sought to differentiate the different solutions and investigate how and why they vary.

Method

Used Datasets

• sampling1d5 : Optimizations: 10, cores: 20, step size: 0.005, target velocity: 1.5m/s, time:
10s, Optimizer: CMA-ES.

• sampling1d5-c80 : Optimizations: 10, cores: 80, step size: 0.005, target velocity: 1.5m/s,
time: 10s, Optimizer: CMA-ES.

From the dataset [sampling1d5-c80] the 10 optimum solutions were simulated independently
for 8 seconds to generate motion data of the musculoskeletal model. It turned out that 2
solutions could not simulate properly. Therefore only 8 were actually used. In order to only use
data after the simulation had stabilized a script was made to find the last whole step of the
right foot and mark the start and end. This range was then plotted from right heel strike to
right heel strike. Due to varying sample length all samples were truncated to match the shortest
meaning that not all samples were plotted all the way till the next heel strike would have
appeared. These data were then plotted for all 8 strategies, showing the impact of the different
solution strategies. Ground Reaction Force (Fig 5.9), Kinematics (Fig 5.10), Torque and Muscle
Activation (Fig 5.11). The differences of each strategy were also visualized by performing a
PCA on all simulation data coming from those 8 optimizations (See Fig. 5.7).
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Figure 5.7: 2D PCA plot of the same samples showing that the are all different

To investigate the reason behind the different strategies Principal Component Analysis
(PCA) was used to plot the development of optimizations (See Appendix B.1.2 for details on
PCA). This was done by performing a PCA on all control files from dataset [the sampling1d5
and sampling1d5-c80]. Each sample was then transformed by the PCA and plotted on in a 3D
plot with the 2 principal axis’ and their fitness value on the last (Fig 5.8).

Results

The Kinematics, Torque and Muscle Activation varies in both shape and time across the different
solution strategies. It was furthermore found that simulation data did not have consistent
internal time steps. This made it difficult to quantify their differences and plot them correctly.
No ideal solution was concluded for normalizing simulation data correctly. For that reason the
data was plotted as-is but truncated to match length.

During simulation of each sample control file it was found that fitness values were not
consistent between logged fitness from optimization and performing an independent simulation.

A difference of about 0.02 in fitness was found between results from the optimization and
independent simulation. Beyond that control files that had been labelled with a good fitness
turned out to stumble and fall when simulated independently thus never achieving a stable
gait. This was the case for the two files that could not simulate. The problem was furthermore
verified by discussions with other users of the software.

Summary

Fig. 5.8 suggest that each strategy gets formed by the first couple of iterations scattered in the
back of the plot. The best of these initial stochastic samples then points a direction for the
CMA-ES algorithm to travel. The optimizer then narrows down its search width progressively.
This eventually traps it in one path that it will continually improve upon. These data show
the varying gait patterns resulting from the optimizer finding different local minima for each
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Figure 5.8: PCA of control parameters development for 10 different solutions with identical
conditions. Showing only datapoints with consecutive improvements

optimization. The plotted motion data only really allow for an overall impression of the data
but invalidates actual comparison by small variations due to the difference in time steps.

Rounding off floating point numbers when saving control files was found as a possible
cause for the inconsistent fitness between optimization and individual simulation. This could
give slightly different values control files were loaded compared to the internal values used
for simulation during optimization. Current result files are printed using 21 decimal places,
but further investigations are required to determine the internal floating point representation
in OpenSim and whether that could be the cause. The fitness value is an abstract measure
and data resulting from this thesis is not meant for clinical use or as conclusive evidence. For
that reason and because others had failed to locate the error, this issue was not thoroughly
investigated and deemed outside the scope of the present study. However, this introduces a
random error that could result in significant differences which are difficult to estimate.
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Figure 5.9: Step Cycle Ground Reaction Forces, 9 optimization repetitions for 1.5m/s,
optimized using 80 cores

Figure 5.10: Step Cycle Joint Angles, 9 optimization repetitions for 1.5m/s, optimized using
80 cores
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Figure 5.11: Step Cycle Muscle Activation, difference in activation of 9 optimization
repetitions for 1.5m/s, optimized using 80 cores

5.4 Exploring Stability, Speed and Control

Motivation

It was found that the reflex-controller is able to adapt to varying targets by changing its
parameters. This includes handling a range of different perturbations and speeds by optimizing
for each argument and finding a new set of parameters. Using this principle several features
and questions appear, including how simulations behave when changing parameters and how
transitioning between multiple parameter sets are handled. The following experiment explore
these questions. The following method relates to the optimum control file found by a certain
set of input arguments by stating their argument, ie. using 1.5m/s means using a control
file optimized for a target velocity of 1.5m/s and 0.0 perturbation amplitude. Similarly using
0.6 perturbation amplitude at 1.5m/s refers to the control file found by optimizing for those
parameters.
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Method

Used Datasets

• consecSpeed: Optimizations: 7, consecutive optimization, perturbation: 0, cores: 20, step
size: 0.005, target velocity: 1.5m/s, time: 10s, Optimizer: CMA-ES.

• consecPerturb: Optimizations: 7, consecutive optimization, perturbation: from 0.0 to 0.6
in steps of 0.1, cores: 20, step size: 0.005, target velocity: 1.5m/s, time: 10s, Optimizer:
CMA-ES.

Online changing of speed was explored during several simulations of different control files.
The following three simulations all used optimum solutions from dataset consecSpeed. First a
simulation was started at 0.8m/s and was set to switch to 1.8m/s after 4 seconds. This was then
simulated for 10 seconds in total. Similarly another test was made which went from 1.2m/s
to 1.4m/s using same timing. Then a third test was made using several steps from 1.0m/s to
1.8m/s in steps of 0.2m/s. The first switch was similarly applied after 4 seconds and the speed
was then further increased every 2 seconds, simulating for 20 seconds total.

The impact of perturbations in optimization was then explored. This was done by performing
2 simulations both using dataset consecPerturb. First a simulation was made starting at 1.5m/s
with a perturbation amplitude of 0.0 and switching to 1.5m/s and an amplitude of 0.6 after
4 seconds, simulating for 10 seconds total. Then a simulation was started at 1.0m/s with no
perturbation and changed to 1.5m/s with a perturbation amplitude of 0.6 after 4 seconds,
simulating for 10 seconds.

Results

The initial test of going from one extreme speed (0.8m/s) to another (1.8m/s) stumbled and
fell almost instantly after switching parameters. The next test where the transition was much
smaller resulted in a stable gait defined by the new parameters, thus causing an acceleration of
0.2m/s. By applying several parameter updates consecutively, the simulation stumbled and fell,
despite the small individual steps. Changing from no perturbation to a perturbation amplitude
of 0.6 resulted in a stable gait, which by visual inspection mainly concerned a variation of the
trunk angle, making it more vertical. Going from one speed to another that was optimized with
perturbation allowed for a larger speed transition and resulted in a stable gait, thus inducing a
speed increase of 0.5m/s.

Summary

When performing supraspinal control and going from one set of parameters to another, it was
assumed that switching between different solution strategies could also impact the stability.
Due to this and the varying impact of switching based on timing, as well as the varying timing
of each simulation, it was found impossible to properly quantify this measure within the time
frame of the present study. Further studies will therefore be needed in order to properly specify
the impact of using parameters with high stability for changing speed. It was furthermore noted
that the time at which the parameters change could have an impact on the resulting stability.
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5.5 Predicting Fitness and Correlating Parameters

Motivation

Predictive Simulation systems like PredictiveSim consist of a complicated interrelated circuitry
that relies on a number of abstract parameters. These parameters are often implemented in
a purely functional way which is difficult to relate to. Furthermore the parameters are often
difficult to find, requiring high performance computers and many hours of optimization for
each individual set of conditions. For that reason any improvement in performance for finding
good fitness values are interesting, thus exploring potential high-level patterns could prove both
valuable for optimizing time, but also in relation to Supraspinal Control, where parameters
could be made to change based on such patterns. Either independent of optimization or using
more narrow search criteria.

Method

Used Datasets

• sampling1d5 : Optimizations: 10, cores: 20, step size: 0.005, target velocity: 1.5m/s, time:
10s, Optimizer: CMA-ES.

• sampling1d5-c80 : Optimizations: 10, cores: 80, step size: 0.005, target velocity: 1.5m/s,
time: 10s, Optimizer: CMA-ES.

• brsBig-fittedRange: Optimizations: 1, total samples: 85.642, range fitted to CMA-ES
search width, cores: 80, step size: 0.005, target velocity: 1.5m/s, time: 10s, Optimizer:
BRS.

Approaching this was here done by Machine Learning to investigate whether such algorithms
can see a pattern that is difficult to find otherwise. Using the Python SKLearn library (Pedregosa
and Varoquaux, 2011) three linear regression models were done, training on three datasets:
Sampling1d5, sampling1d5-c80 ] and brsBig-fittedRange.

(1) Dataset sampling1d5 and sampling1d5-c80 combined were used to train the algorithm.
This was done repeatedly for 100 iterations, training on 90% of the data and using the other
10% randomly chosen samples to validate, yielding an average R2-value. (2) The same was then
done again on the same dataset but this time using one whole optimization (solution strategy)
as validation data. By training on 19 optimizations and validating against the last, an average
R2-value was found for predicting across solution strategies. (3) Dataset brsBig-fittedRange
was analysed similar to the first using randomly chosen validation samples. This dataset was
furthermore truncated to only contain samples with fitness below 30. The value yielding the
best correlation was found by a simple scripted loop, which resulted in the best fitness cutoff as
well as a third R2-value.

Results

(1) gave and average R2-value of 0.93 validating against 10% random samples.. (2) gave an
R2-value of 0.36 for predicting across strategies. (3) was found to provide the highest R2-value
when truncated at fitness < 30. This reduced the set to 1319 samples resulted in an R2-value
of 0.26.
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Summary

First R-value showed predictions inside a large amount of samples. This expresses that linear
regression can approximate the interrelated position of the samples, which is not a big deal.
The R2-value of 0.36 is too low for any conclusions. However, refined methods for pre-treating
the data before training, or exploring non-linear models instead may be able to find a better
correlation. The value of fitness cutoff at 30 is in accordance with the pattern seen on fig 5.6
where the samples seem to appear in two groups, separated at a fitness value of 30. While these
numbers do not show an impressive correlation the results suggest that there may be benefits
of applying machine learning algorithms to both analysing and predicting the solution space.
SVM or other techniques should therefore be tested further to see if better correlation can be
achieved. Either way this shows that swiping through the solution space using algorithms such
as BRS while saving all simulation data may provide a foundation for estimating where to look
for good fitness in a less biased way. This could potentially be used to supplement optimization
algorithms to make more qualified guesses.

5.6 Parameter Variation Tendencies

Motivation

Based on the fact that Predictive Simulation systems presented here are founded biology, there
may be benefits in analysing the parameters themselves. The parameters are able to vary to
accommodate a range of different tasks. It is then hypothesized that gaining insight into this
structure might potentially reflect in clinical observations by being approached from a different
angle.

For exploring parameter variations it was hypothesized that the difference caused by varying
input arguments are larger than the potential difference between solution strategies. In this
way a range of optimizations with varying arguments could show statistical tendencies that
correlate better with variation of the argument in question rather than solution strategies.

Principal Component Analysis is a method that finds the combination of parameters that
linearly express the biggest variation in a dataset. Therefore, if the above hypothesis is correct,
then the first principal axis of a PCA could express this relation between parameters and
the corresponding input argument. The hypothesis can then be validate if the samples with
varying arguments appear ordered on the first PCA axis according to their argument value.
If the relationship is not linear, then multiple PCA axis may express the argument variation
combined.

Method

Used Datasets

• consecSpeed-smallStep: Optimizations: 11, repetitions: 3, consecutive optimization, per-
turbation: 0, cores: 20, step size: 0.001, target velocity: 0.8 to 1.8m/s with increment of
0.1m/s, Optimizer: CMA-ES.

• consecPerturb-smallStep: Optimizations: 6, consecutive optimization, perturbation: from
0.0 to 0.6 in steps of 0.1, cores: 20, step size: 0.001, target velocity: 1.5m/s, Optimizer:
CMA-ES.
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Figure 5.12: Parameter variation of multiple consecutive optimizations with varying speed.
Showing only parameters with std > 0.1

• indepSpeed02 : Optimizations: 7, cores: 20, step size: 0.005, target velocity: from 0.8m/s
to 1.8m/s with increments of 0.2m/s, Optimizer: CMA-ES.

Consecutive optimizations were used, applying a small step-size and small increments for
each new optimization. This was done to minimize diversity by solution strategies for easier
comparison and analysis.

The resulting optimized parameter sets were compared while looking for tendencies in
parameter development related to the varying speed or perturbation arguments. PCA was used
to quantify variation according to which parameters change with varying arguments.

First, repetition one of consecSpeed-smallStep was plotted with each optimum solution on
the x-axis in consecutive order of speed, showing their parameter values on the y-axis, truncated
by std > 0.1 to avoid clutter (Fig. 5.12).

PCA was then applied to consecPerturb-smallStep and plotted on the two first principal
axis’ (Fig. 5.13)

The same was done for repetition one of consecSpeed-smallStep as well as indepSpeed02
plotting the two first principal axis accordingly: Fig. 5.14 and Fig. 5.15

Finally all 3 repetitions in consecSpeed-smallStep were analysed. Their data was combined
and plotted by PCA (Fig. 5.16).

Results

The parameter variation of speed with small step-size shows some tendencies that could correlate
with varying speed, yet still lacking clean variations (Fig. 5.12).

Perturbations : For a single repetition of consecutive optimization from 0.0 to 0.6 in
amplitude the first two axis’ of the PCA were found to generally order each sample in accordance
with the increasing amplitude argument. Only exception was the two samples with amplitude
of 0.0 and 0.1 there were almost coinciding. These axis’ were also found to explain 56% and
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Figure 5.13: PCA of dataset [perturb from 0-0.6]. The combination of the two best axis of
the PCA appears to order the different samples according to their varying
perturbation amplitude. The two samples that are on top of each other are for
amplitude 0.0 and 0.1

Figure 5.14: PCA of first repetition of consecSpeed-smallStep. The data is plottet on the first
two axis’ of the PCA. The two PCA axis’ appear to separate the individual
samples in the same order as their target speed, which combined explains 64%
of the overall parameter variance.

17% respectively of overall variance. Figure 5.13 shows the samples plotted on the first and
second axis of the PCA.

Speed : Fig. 5.14 shows a PCA plot of consecSpeed-smallStep where samples are sorted
according to target speed. The PCA plot of indepSpeed02 shows a similar pattern is seen,
despite each optimization is performed independently (Fig 5.15).

Summary

The essence of using PCA in this way is that the algorithm finds a list of weighted parameter
sets that by linear combination can explain the variation in the samples. The first set explains
the most with all the following explaining less and less of the variance. In this way, looking at
the primary set/axis, you get a sense of how the parameters vary together in order to go from
one sample to another. Ie. Fig 5.17 shows the parameter combination that forms the first PCA
axis of Fig. 5.13. By adding this axis to the sample parameters in different scale, 56% of their
variance can be achieved. Between sample "pert0d2" and "pert0d4" appears to be about 0.3
in difference on the x-axis. This means that 56% of the difference between those two sample
can be accounted by for adding 0.3 · PCA1 to "pert0d2". By using the second axis as well,
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Figure 5.15: PCA of dataset indepSpeed02. Labels describing target velocity, 1d2=1.2m/s.
The two PCA axis’ order the samples according to the varying target velocity,
despite all samples being individual optimizations.

Figure 5.16: PCA of all repetitions from consecSpeed-smallStep. Each cluster of samples
correspond to an individual optimization run, where each individual point is a
different target speed

Figure 5.17: Explained Variance Ratio of the primary axis, dataset [perturb from 0-0.6].
Showing the linear combination of each optimized parameter that form the
primary axis and explains 56% of the overall variance for dataset
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another 17% can be accounted for. However, this approach only shows the combination that by
a linear approach can explain the most variance and does not describe everything. The linear
structure of this also means that the explained variance works best for parameters that vary
linearly. If they for example vary exponentially instead then several additional axis are required
to properly explain a variance by a linear combination. This will make the result less clear.
As seen in fig 5.14, some parameters does indeed appear to vary along both the 1st and 2nd
principal axis which suggests that the parameters have a non-linear relationship to varying
speed.

The high amount of variance explained by a single axis as well as the automatic ordering
according to amplitude or speed could suggest that the algorithm found a good indicator for
the variation of parameters that obtain different stability and speed. Additionally the PCA
plots of single optimization runs show an interesting tendency on the 2nd PCA axis, especially
in those made by consecutive optimizations (Fig. 5.13 and 5.14). The independent optimization
run shows similar tendencies yet a little less structured. However, this run was not intended to
maintain any particular solution strategy meaning that all samples are using a new and unique
strategy to achieve stable gait at each different speed. The implications of this are that the
varying speed appear to result in a bigger variance than the individual solution strategies.

When PCA is applied to dataset consecSpeed-smallStep containing three different strategies,
however, then the variance between each strategy appear to outweigh the variance governed by
change in input arguments (Fig. 5.16). Alternatively this may suggest that different strategies
vary their parameters differently for achieving the same target. In this way the variation caused
by speed change from one strategy may be different for another strategy.

The resulting parameter weighting in the EVR plot (Fig. 5.17) could then be a potential
method for extrapolating parameters to reach new parameter combinations capable of handling
situations that have not been optimized. In this way it could be interesting to use these PCA
axis’ for generating new parameters that can be simulated. They may also help in predicting
good fitness for a certain combination of arguments that have yet to be explored by optimization.

This result could also prove beneficial for parameter interpolation in supraspinal control
(See Section 5.4).

5.7 Running
It was attempted to get PredictiveSim to realize a running gait by following notes in both
Geyer and Herr (2010); Wang et al. (2012) by editing initial parameters but without success.
The controller did not seem capable of switching strategy and only managed a more bouncy
gait which realized a much slower speed than targeted. A conversation with Jack M. Wang
suggested that this could be due to the 3-stage setup, where Geyer and Herr (2010); Wang et al.
(2012) both used a 4-stage setup. However, the 4-stage method was found to be less efficient in
Dorn et al. (2015) which caused the change.
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Further Thoughts

This Chapter adds a few last notes to the material that has been presented up till this point.
These concern Structure of parameter value variation, the multiple solutions that evaluate
with equal fitness, connectomics of controllers, current bottleneck as well some benefits and
drawbacks of adding complexity.

Structure in Parameters: Looking for structure and patterns in the parameters can from
here initially be approached by simple clustering algorithms. However, it is also hypothesised
that such patterns could be approached by Deep Learning algorithms or other methods, in the
hopes that high-level structures may appear. This may also eventually form the basis of the
supraspinal control, that could be driven by such overlying patterns to constantly modulate
the reflex loops (Lobo and Levin, 2015).

Multiple Equal Solutions: The data suggests that there are a very high number of solutions
that are deemed equally good by the fitness function while possessing slightly different strategies.
This can suggest two different points: One is that the Objective Function should be improved
to make a more concave solution space to allow the optimizer to find the global optimum.
Alternatively, the goal may not be a single optimal solution after all, if either of the solutions are
equally good. This could be viewed as a potential reason behind the unique body language of
humans. It is possible that such shape of the fitness function is not completely implausible and
that each unique gait stems from the human nervous system stranding on a local minimum, thus
adopting a particular gait strategy from which future learned behaviours spring. Furthermore
this may explain why running-trainers, with an analytical approach to gait patterns, can train
a human by proper instructions, to adopt a more efficient pattern that the body did not find
by itself. Research therefore needs to be done to explore this further. This could potentially
be done by comparing the different strategies and looking for potential ways to evaluate their
differences and maybe determine if and how some are better than others. Such an observation
could be added back in to the Objective Function which would then be able to better determine
good strategies from bad.

Connectomics of the Controllers: By introducing the idea of multiple pathways that
are activated or inactivated at different times, a diverse locomotor system could in theory be
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established by an high number of reflex-loops with corresponding high amount of state-specific
parameters. As shown by Jeff Lichtman, however, neuromuscular connectomics show that in
mice there is constant competition between axon development where less used pathways decay
while active pathways reinforce themselves (Tapia et al., 2012; Coggan et al., 2004). This
suggests that a mature body can be expected to posses only the most used neural pathways. It
could then be hypothesized that this follows an optimization of both energy and real-estate
where diversity of movement is achieved by the least amount of connections possible. How
this diversity is defined could prove a valuable point when approaching design of biologically
inspired Predictive Controllers. This method may even be directly applied as an optimization
process for designing controllers. See Future Works for more (Chapter 7).

Bottlenecks: Some of the bottlenecks for progressing to a more life-like synthetic motion
appears to be located in both the design of the controller and formulation of the objective
function. Now that we have reached stable gait patterns and thus verified that this is possible
using relatively simple systems, it is therefore important to approach the designs of both
controller and objective function in a way that minimize bias.

Added Complexity: State-of-the-art Predictive Controllers provide a good basis for further
research where the controllers iteratively can be moved towards a more physiologically plausible
system while seeking to get progressively closer to clinical data. Several of such extensions are
already under way including (Song and Geyer, 2015), (Dzeladini et al., 2014) and (Geijtenbeek
et al., 2013). However, while their effort in many cases has added further functionality which is
believed to improve biological feasibility, the resulting motion does not always show improved
resemblance with human motion.
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Conclusion

Predictive Simulation in biomechanics is currently able to successful achieve gait by optimizing
for high-level objectives, both in 2D and 3D. The resemblance with humans varies across the
different controllers but overall they are approaching one standard deviation of clinical data.
Despite this, some features persist in being elusive and functional diversity is in general limited,
so that elaborate and alternative formulations of high-level objectives are being explored along
with the connectomics of the controller.

During this thesis an overview of Predictive Simulation was given, establishing a theoretical
foundation for approaching the topic. Overall functionality of Predictive Simulation is presented
followed by a description of its sub-systems. These include: Predictive Controller, Mechanical
System, Simulator, Objective Function and Optimizer. By the combination of these sub-system
it was possible to perform an optimization seeking to minimize the output of the Objective
Function. The results of this was a motion pattern of a human-like virtual model that appears
to walk similar to humans. Following this introduction a broad overview was given of the human
Nervous System, which forms the foundation of biologically inspired Predictive Controllers for
human gait.

Subsequently the software PredictiveSim was explained. This is a free software package for
performing Predictive Simulation, made by Tim Dorn and Jack Wang at Stanford University
(Dorn et al., 2015). Additional functional features were implemented including: Adding the ability
to vary controller parameter during simulation by supraspinal control, adding perturbations so
that optimizations can be quantified by stability and finally adding Blind Random Search as
an alternative optimization algorithm.

The extended software was used for making experiments on human gait, analysing optimized
solutions and exploring patterns in the 70 optimized parameters yielding different features
when simulated. The experiments led to different conclusions that are explained as follow.

Initially the ability of PredictiveSim to synthesize a gait pattern without recorded data was
verified and that it by visual inspection resembles human walking. This is in accordance to what
was found by Dorn et al. (2015). PredictiveSim uses a simplified human model with 6 joints, 9
DOF and 16 hill-type muscle and a controller. The controller is defined by a set of reflex loops
relating foot contact and muscle states to muscle activation. The controller is parameterized
by 77 values of which 70 are optimized by an iterative stochastic optimizer (CMA-ES). The
resulting gait pattern is then a consequence of a minimization problem, which seeks to decrease
metabolic cost per distance travelled while achieving a certain speed.
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Getting the system to synthesize a running gait was briefly attempted but without success,
possibly due to the definition of controller states, which here differs from the other similar
controllers that were able to run.

A discrepancy was found between the resulting fitness values of parameters when optimized
and the fitness value yielded by subsequently simulating the same parameters by loading the
control file. The discrepancy was found in some cases to be approximately 0.02, yielding the
higher (worse) value when the control file was loaded and simulated. In several other cases a
simulation based on a control file that contained a good fitness from the optimization process,
appeared to stumble and fall. A possible reason for this was an insufficient value-precision when
saved to control file and subsequently loaded for simulation.

Supraspinal control was explored by a series of experiments involving changing controller
parameters during a simulation. These showed that speed changes of 0.2m/s can be achieved by
swapping between parameters of 1.2 and 1.4m/s. A larger speed change resulted in the simulation
stumbling and falling. If instead the parameter set had been optimized for perturbations, a
speed change of up to 0.6m/s was achieved before stumbling, thus suggesting that optimization
with perturbations cause an increased stability margin.

Analysis of the CMA-ES optimization algorithm showed that each repeating optimization
arrived to a unique solution, despite identical initial circumstances. This was further explored
by investigating the path of the parameter variation through optimizations. In this case the
initial stochastic sample was found to have a large impact on the subsequent path. This would
then suggest a direction which initiated the optimization algorithm on this path, disregarding
alternative paths that could lead to better fitness. The optimizer thus has a tendency to get
caught in local minima and a more diverse strategy should be considered.

The resulting parameters from a number of optimizations were analysed by looking for
structured variance relating to changes in speed or resistance to perturbations in order to explore
predicting combinations that could result in so far undiscovered combinations. The analysis
was done through linear regression Machine Learning and Principal Component Analysis.
By training a linear regression Machine Learning algorithm on a 1319 parameter sets with
corresponding fitness, the algorithm predicted a fitness outcome with an R2-value of 0.364. The
use of Principal Component Analysis allowed to find different correlations. The first and second
principal axis by linear combination could explain between 64% and 73% of overall parameter
variance, correlating with speed and perturbation increments.

This suggest that the computation-intense optimization algorithm may benefit from using
such strategies to predict initial conditions for subsequent optimizations. Furthermore, the
correlations suggest that there could exist an overlying pattern that governs these parameter
variations for different tasks. Learning more about these patterns may provide useful insight,
both for improving performance of optimization but also as a means to explore supra spinal
control and what kind of logic may be supporting adaptive reflexes in locomotion.

Finally it was found that interdisciplinary studies are essential for approaching topics such
as Predictive Simulation. Many fields that in engineering are defined separately appear to fuse
on a higher level when used to approach difficult questions.

7.1 Future Works

Based on the present study a multitude of future works are required to proceed further. However,
one particular stands out which is lowering bias of the controller. A hypothesis is presented
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here to approach overcoming the bottle-neck that is inherent in today’s designed controllers:
The method relies on 2 parts: (1) Establish a well-defined set of building block that may

be connected to provide the functionality of current controllers (See Section 3.6 for an initial
attempt). These blocks are then used to relate all sensory input to all muscles in various
ways. (2) A simple musculoskeletal model, similar to that of the present study, is matched to
motioncapture data using dynamic optimization of muscle activation. The system of (1) is then
optimized for matching the muscle activation found by (2) using either or all of its sensor to
muscle relations, and applying a similar strategy of neural decay as presented by Jeff Lichtman
(Tapia et al., 2012). This method is slowly decaying less likely connections while emphasizing
those that prove better correlation. After allowing most connections to completely decay, the
product would then be a controller containing only the relations that emphasize correlation
with the tracked motion, thus potentially providing new functional connections that are not
easily designed manually.
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Appendix A
PredictiveSim Documentation

This is documentation for JWPredictiveSim, which is a derivative of PredictiveSim by Dorn
et al. ((2015)). The following sections extend upon the original documentation while introducing
a couple of new features from JWPredictiveSim.

A.1 Getting Started With Predictive Sim

A.1.1 Reaching First Simulation

PredictiveSim is a package released in 2015 alongside the publication: Predictive Simulation
Generates Human Adaptations during Loaded and Inclined Walking by Dorn et al. ((2015)).
The system comes as a bundle of source files: 9 c++ files, 9 header files, a CMakeLists file, 2
Matlab methods for generating initialization files, a list of OpenSim model files and a README.
The README is the only source of documentation provided including 3 example commands
with explenations of each as well as the following guide for getting it running:

"Run cmake to build the executable, specify the installation location for OpenSim. This source
code has most recently been tested using OpenSim 3.2, Simbody 3.3.1, and gcc-4.9 on OSX
Yosemite (10.10.3).
Some auxiliary files need to be generated by running createOptInitFiles.m using either Matlab
or Octave."

A.1.2 Compiling on Windows

Despite the verified compatibility with OSX, the system was first sought compiled on Windows
for reasons of better prior understanding of platform and available tools. Microsoft Visual
Studio 2015 (VS2015) was chosen as the Windows compiler as it was the latest verified compiler
for the two dependencies: OpenSim and Simbody. Simbody and Opensim both have precompiled
packages available for Windows which was installed.

MPICH2 or OpenMPI for windows?!
The PredictiveSim CMake file was then setup pointing to their installation directories, using

VS2015 as the compiler and enabling MPI. It was found that PredictiveSim crashes without
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proper error handling if run without MPI or using only 1 node. Setting up all linked libraries
in VS2015 required some meddling around but everything compiled when it was finally sorted.
PredictiveSim requires a list of input files when executed. By default these are assumed to
be located in the parent directory of the executable. The required files are the auxiliary files
generated by createOptInitF iles.m: optimizationvalues.sto, optimizationactiveparams.sto,
optimizationbounds.sto and optimizationranges.sto and a model file (By defaultHumanoid2D.osim
is used). Further inputs include a control file using the argument −cf , −viz enabling the visual-
izer, −t setting the length of the simulation. A complete list of arguments can be found in section

With the above in place, the bundled control file normalwalk.sto can then be simulated for 10
seconds and visualized by the following command.:

pdsim.exe -m ../Humanoid2D.osim -cf ../normalwalk.sto -t 10 -viz

An optimization can then be launched by the following command. Here the target speed 1.5m/s,
step size for the optimizer is 0.005, the optimization uses 10 seconds of simulation per evaulation
and it has been launched on 50 nodes using MPI.

mpiexec -n 50 pdsim.exe -m ../Humanoid2D.osim -opt 0.005 -target 1.5 -t 10

A.2 Procedure of use

This procedure assumes that PredictiveSim has been correctly compiled along with MPI,
producing a pdsim executable as well as containing the correct files it its parent directory (See
Appendix A). To initiate the system 4 auxiliary files are required. These are generated by a
supplied matlab script, createOptInitF iles.m, which creates: optimizationactiveparams.sto,
optimizationvalues.sto, optimizationranges.sto and optimizationbounds.sto. The matlab file
contains a list of all input parameters along with their corresponding values, range, bounds
and whether or not they should be optimized. When the script is run, the auxiliary files each
contain their corresponding values in a format that OpenSim can read. For performing an
optimization on Windows the following command can be used:

mpiexec -n 50 pdsim.exe -target 1.5 -t 10

This initiates 50 parallel nodes through MPI, running the a pdsim optimization for 10 seconds
aiming for a target velocity of 1.5 m/s. While the optimization procedure is running iteratively
it will write a control file named resultitr#.sto each time a better fitness value is found, where
the # is the iteration number. This file contains a list of control parameters that when simulated
gives the latest and greatest fitness. When a sufficiently good fitness is found the process can
be stopped and the resulting control file can be simulated with:

pdsim.exe -cf result_itr#.sto -t 10 -viz

This will perform a 10 seconds simulation run through using the parameters in the control file
resultsitr#.sto while writing out a file called _results.sto that contain all data about limb
position, velocities, muscle forces, ground forces etc. for each time step. The parameters in
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_results.sto can then be plotted through OpenSim or any other tool capable of extracting the
information from the file, or the motion can be replayed using the replay argument:

pdsim.exe -replay _results.sto -t 10 -viz

An optimization using PredictiveSim will output a number of files. These include a re-
sult_opt_progress.csv file that contains 4 columns: iteration number, fitness value, current
best fitness and time in seconds. For each new iteration a new line will be added to this file.
Secondly a number of result_itr####.sto files will be created for each improved fitness. These
are control files containing all parameter values required to reach the given fitness.To perform
an optimization a number of inputs are required. For initiating an optimization the initial
conditions are by default given by the 4 auxiliary files produced by the attached Matlab script.
These specify all initial values, which parameters are to be optimized as well as defining the
bounds for each parameter. Additionally there is an option to use a specific control file as initial
condition. Doing this will overwrite the values stated in the auxiliary files by the ones given
by the control file. The above mentioned result_itr####.sto files can be used for this. More
details about input and output files in Appendix A.5.

A.2.1 Summary
Software Used

• Windows: Microsoft Visual Studio 2015 Pro
• Linux/OSX: gcc 4.9.2
• CMake 3.2.2
• Simbody 3.5.3
• OpenSim 3.3
• OpenMPI or MPICH2 for windows?

Notes

• Code requires MPI to run. Will crash without it
• CMakeList does not include Window/Linux paths by default
• (linux) Setup CMake with:

BUILD_USING_OTHER_LAPACK =: liblapack.so.3; libblas.so.3

A.3 MPI and Cluster Simulation
• MPCH2

• Suggested setup

A.4 CMA-ES
1. stepSize (σ) - progression. It should lower along with iterations?

2. individual (x)
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3. parents (µ)

4. population size / offspring (λ)

5. damping?

6. standard deviation (σ0)

7. Rank?

A.5 Input/Output data
Input Data

1. model file,

2. control file. This is includes the 4 files generated by the matlab script as well as an
optional file for defining other initial parameters, added by the argument "-cf"

3. target speed

4. time

A.6 Details

A.6.1 Optimized Parameters
There are by default 70 parameters that are being optimized, with 77 parameters in total where
the last 7 describe trunk translation on the x-axis as well as 6 static parameters describing the
contact forces: stiffness, dissipation, static_friction, dynamic_friction, viscous_friction and
transition_velocity. What are the _p and _q parameters? - Containers for muscle previous
muscle activation. _p in stance phase and _q in swing phase.

’trunk_extension’,
%’trunk_tx’,
’trunk_ty’,
’hip_r_flexion’,
’knee_r_extension’,
’ankle_r_dorsiflexion’,
’hip_l_flexion’,
’knee_l_extension’,
’ankle_l_dorsiflexion’,
’trunk_extension_u’,
’trunk_tx_u’,
’trunk_ty_u’,
’hip_r_flexion_u’,
’knee_r_extension_u’,
’ankle_r_dorsiflexion_u’,
’hip_l_flexion_u’,
’knee_l_extension_u’,
’ankle_l_dorsiflexion_u’,
%’stiffness’,
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%’dissipation’,
%’static_friction’,
%’dynamic_friction’,
%’viscous_friction’,
%’transition_velocity’,
’GMAX_p’,
’ILPSO_p’,
’HAMS_p’,
’RF_p’,
’VAS_p’,
’GAS_p’,
’SOL_p’,
’TA_p’,
’GMAX_q’,
’ILPSO_q’,
’HAMS_q’,
’RF_q’,
’VAS_q’,
’GAS_q’,
’SOL_q’,
’TA_q’,
’G_sol’,
’G_ta’,
’l_off_ta’,
’G_solta’,
’G_gas’,
’G_vas’,
’k_phi’,
’phi_k_off’,
’k_p_glu’,
’theta_ref’,
’k_d_glu’,
’Delta_S_glu’,
’G_ham’,
’G_glu’,
’G_hfl’,
’l_off_hfl’,
’G_hamhfl’,
’l_off_ham’,
’k_lean’,
’k_p_hfl’,
’k_d_hfl’,
’k_p_ham’,
’k_d_ham’,
’Delta_S_hfl’,
’Delta_S_rf’,
’Delta_S_vas’,
’k_p_glu_sp’,
’k_d_glu_sp’,
’k_p_hfl_sp’,
’k_d_hfl_sp’,
’k_p_vas_sp’,
’k_d_vas_sp’,
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’htheta_ref_sp’,
’phi_ref_sp’,
’sp_threshold’,
’simbicon_cd’,
’simbicon_cv’

A.6.2 Delays
0 delay for reading COM position 0.01s delay for reading

A.6.3 Source Files
• mainċpp Main loop, checking commandline argumnets, initiating system, loading files

and starting either the optimizer or a single simulation with or without visualization.

• GeyerHerrControllerċpp
Computing muscle controls and initiating controls with start state. This is where all
reflexes are modelled and connected.

• cmaesċ and cmaes_interfaceḣ
The CMAES algorithm, as described by Hansen et al. ((2003))

• CMAOptimizerċpp

• EventHandlersċpp Simulation State Switching using events from foot contacts and visual-
ization key triggers

• PredictiveOptimizationSystemċpp Objective Function

• SimpleMuscleċpp Defining the muscles

• SoftCoordinateLimitForceċpp Defining the ground reaction forces

• Utils.cpp A list of utilities including conversion functions from standard parameter input
to a normalized optimizer input and back again.
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Supplementary Sections

B.1 Tools Details

B.1.1 Machine Learning

The Machine Learning (ML) library used here is the Python SKLearn library ((Pedregosa and
Varoquaux, 2011)). Machine Learning refers in this project to linear regression models. These
are used as a method for automatically looking for patterns in large and multidimensional
dataset. First an ML algorithm is trained and then it is validated. The validation happens
by separating the dataset into training and validation data. The algorithm is then trained by
the training set and subsequently asked to predict the validation set. For quantifying this the
library includes a ’regr.score’ function that output the corresponding R2 value for a series of
validations.

B.1.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is here applied through the Python based SKLearn
library Pedregosa and Varoquaux ((2011)). The basical functionality of PCA is to perform a
coordinate transformation to a dataset where the first axis of that new coordinate system is
pointing in the direction where the dataset is the widest. This means that PCA looks for the
directions where the data varies the most and aligns its axis according to these direction. Each
axis is defined by a weighting of each of the parameters in the dataset and their Explained
Variance Ration (EVR) is given, which states how much of the variance in the dataset is
explained by each axis.

B.2 Software and Additional Features

B.2.1 Approaching the Software

The software (PredictiveSim) came with an initial README describing the basics for getting
started (See Appendix C). For initial testing Visual Studio was used for compiling on Windows,
using CMake and MPICH2. Windows was also used as the primary platform for further
development of the software. For running optimizations on DTU’s High Performance Computing
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cluster (HPC), both OpenSim ((Delp et al., 2007)) and SimBody ((Sherman et al., 2011))
needed to be compiled as well due to a Linux-based platform (More info can be found in
Appendix A) With the software running the code was explored and annotated.

Preparing PredictiveSim for Analysis

PredictiveSim produces a list of files when run, which can be used for analysis (See Appendix
A.6 for details). However, in order to accommodate a more in-depth analysis it was found that
more details would be needed as well as a new approach to save out and handle a large amount
of simulation data. This both raised the requirement for data management as well as labelling
so that processes could be automated and that all information for each simulation could be
easily related. This was achieved in part by adding metadata to all files produces as well as
extending some of the basic functionality of the software. The metadata would then include
all information about achieved fitness value, execution parameters, file dependencies etc. In
conjunction with this a number of python tools were made to automate most of the repeating
logical tasks, extract information from large number of files, plot and generate new files. Beyond
that a number of small additions were made to the software allowing among other to stop
optimization automatically when a certain convergence threshold had been reached as well
as enabling saving out parameters for all simulations during an optimization process. Saving
out everything would then save a simdump.csv file with each line containing all simulated
parameters and their corresponding fitness. This allowed easy load into python using the Pandas
library. Further information can be found in Appendix B.2

B.2.2 Convergence Check
After analyzing the development of parameters Defined a limit of 30 consecutive iterations
without improvements which would cause the optimization procedure to exits automatically

B.2.3 Adding metadata
To make sure that no data was ever jumbled or confused as well as enabling automatic and easy
retrieval of a range of extra data, a header was added to each resultitr#.sto file containing the
following meta data:

• execFile: Filename of executable
• execCmd: Commandline arguments used
• finaltime: Simulation time
• targetVel: Self explanatory
• backpackLoad: Self explanatory
• visualize: Self explanatory
• printDetailsToFile: Self explanatory
• doOpt: Self explanatory
• resumeIndex: Self explanatory
• stepSize: Self explanatory
• replayFile: Self explanatory
• modelFile: Self explanatory
• ctrlFile: Self explanatory
• ctrlPrefix: Self explanatory
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• fitness: Fitness value using the current file
• noImprovLimit: How many iterations are allowed to pass before exit
• numtasks: How many cores used
• pertAmp: Perturbation Amplitude
• secondsPassedTotal: Elapsed time of whole optimization until this point
• secondsPassedItr: Elapsed time of this particular iteration
• VERSION_NAME: Self explanatory
• VERSION_NUMBER: Self explanatory

A timestamp for each iteration was also added to the result_opt_progress.csv file as well
as timestamps in the Console Out statements for receiving data from each MPI node. These
two additions allowed for easy monitoring of the progression of each optimization.

B.2.4 Added a list of input arguments for easier testing and accessing new
features

• -ctrlPrefix <string>: Cmdln specification of control prefix, allowing to quickly switch
between several files

• -pertAmp <amp>: Define Perturbation Amplitude, disabled if not set.
• -version: Printing current software version name and number and quits
• -supraCtrl: Enabling supraspinal control through currently hardcoded lists
• -loadCtrls: Loading previsouly saved state as the current initial state (Not implemented

fully)
• -saveCtrls <time in sec>: Save out complete state of system at specified time (Not yet

fully implemented)
• -saveAllSim: Saves out parameters and fitness from all inner simulations to a csv file. remember

to up-
date
here

remember
to up-
date
here

• -brf <maxiteration>: Uses Blind Random Search for optimizing instead of CMA-ES

B.2.5 Writing the Basic Tools

During this project most recurring logical tasks were automated using python tools. These
include simulation monitoring, extracting and converting data, sorting through large amount of
files with certain values, generating new control files with simple math operations and plotting
of arbitrary data. All tools produced during this project are maintained in a git repository
which can be found on
https://bitbucket.org/jakobwelner/pdsim-pythonutils
Tools were all written in Python, using a list of libraries including Matplotlib, Pandas and
sklearn ((Pedregosa and Varoquaux, 2011)).

Monitoring Some monitoring tools were made to run remote on the computing cluster,
where simple arguments could traverse through all optimizations and printing out their current
status, latest fitness value, average iteration time and optimization health. The health value was
based on an arbitrary algorithm based on the convergence limit as described in section B.2.2.
This number would describe the sum of squared difference to the current best fitness, looking
30 iterations back, thus reaching 0 when fitness is stable for 30 iterations, ie. no improvement
was made.
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Management A list of python scripts were made to handle data files including reading/writing
of OpenSim Storage files (.sto extension) including both values and meta data. Other tools
were made to traverse file structures containing optimization data while extracting all the best
iterations from each optimization while grouping and naming the files accordingly.

Plotting Using Pandas and Matplotlib a few iPython notebooks were set up to quickly
visualize any optimization data, compare it to other sample and combine multiple samples
using simple mathematical expressions.

Analysis Python was also used for performing simple data analysis using the python machine
learning library SKLearn ((Pedregosa and Varoquaux, 2011)). This allowed for training machine
learning algorithms on the data and performing Principal Component Analysis (PCA) for
determining parameter weighting.

3D-Visualization To visualize the animations a tool was made to extract model-parameters
from the Humanoid2D.osim file containing the OpenSim model file with dimensions, pivots and
muscle attachments. This data was used to reconstruct the model in Alias Mayatm allowing for
more powerful modelling, rendering and animation tools.
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Quick guide to try out the code:

Run cmake to build the executable, specify the installation location for
OpenSim. This source code has most recently been tested using OpenSim 3.2,
Simbody 3.3.1, and gcc-4.9 on OSX Yosemite (10.10.3).

Some auxiliary files need to be generated by running createOptInitFiles.m
using either Matlab or Octave.

================================================================================
To visualize the default control parameters using model Humanoid2D.osim for
10 seconds:
./pdsim -m ../Humanoid2D.osim -t 10 -viz

================================================================================
To visualize the example controller normalwalk.sto using the model Humanoid2D.osim for 10 seconds:
./pdsim -m ../Humanoid2D.osim -cf ../normalwalk.sto -t 10 -viz

================================================================================
To optimize for flat ground walking at 1.5 m/s using CMA and MPI:
mpiexec -n 50 ./pdsim -m ../Humanoid2D.osim -opt 0.005 -target 1.5 -t 10

The above command spawns 50 processes in parallel, the code uses 50-1=49 CMA
samples per iteration by default. The initial CMA stepsize is set to 0.005.

A controller solution is saved (result_itrXX.sto) when the current best value
is improved at a given iteration. These files can be visualized using the
-cf flag.

The .osim file describes the problem environment. For example,
-m Humanoid2DUphill10deg.osim simulates walking up a 10 degree incline.
The initialization for CMA can be modified by specifying a controller using
the -cf flag. For example, using -cf normalwalk.sto and -m
Humanoid2DUphill10deg.osim seeds the 10 degree incline optimization using the
walking controller optimized for flat ground.
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In practice, you might need to run MPI across multiple machines to handle
the amount of parallel processing necessary. You will have to consult your
own system admin to set this up.
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