Soft-Exoskeleton Part 4: eFactor competition

Now came the time for the actual eFactor 2014 Competition.

From the previous post, we now had each part of the project – compressor, pneumatic valves, Arduino control and the artificial muslce –  working individually and we had a good idea about how to assemble them all. However, it was a mess both in the pneumatics and electronics and eFactor was coming up fast. The whole system needed to be working, working together, working consistently and looking reasonable before we could showcase it for the competition. The Arduino was still running from the computer and the rest of the electronics were powered by an external power supply. All electronics were connected through a breadboard and the pneumatic system had tubes everywhere.

Using my new 3D-printer we printed a super-boring-square-engineering-style-practical-box for the electronics and a new pair of end blockers for the muscle, which would fit on the arm of our manequinn doll. The muscle got a a sleeve of stretchable fabric and the pneumatic tubes and wires for the compressor-end got grouped in a single sleeve.

With everything attached the wearable part of the system looked like this:

Working Prototype

Working Prototype

We were sticking pretty well to the mandatory pattern of only JUST getting stuff working the night before you NEED it. The insides of the electronics box had no time to get to the cosmetic fase, meaning that everything was wired by jumper-wires, a breadboard, some super fast soldered joints and a bunch of different voltage batteries, +/- 9 Volts for the muscle sensor, 5 Volts to power the arduino and 6 Volts to power the airvalve servo (turned out last minute that the 5 Volt output from the arduino was too little juice for it to push the valve-pin down).

Enjoy the wonders of the Control Box:

ControlBox intestines

ControlBox intestines

Well.. it barely worked, but it worked. Good enough for eFactor.. or rather, it HAD to be good enough. It was 3 am in the morning of the 4th, the day where we had to transfer the project to Industriens Hus where to competition was to be held, leaving our workshop behind and making it impossible for any further large fixes. The actual competition would then start on the 5rd at 9am.

Waking up again at 6:30 on the 4th I had to take a trip to Odense to do some consultancy for a advertisement company looking into doing some 3D animation. 2 hours each way, 2 hours of meeting and back to Copenhagen to help the team with setup. It turned out we had to do a few last minute solderings and adjustments of the electronics, which I did.. I probably shouldn’t have, as a soldering iron, small tiny bits of fragile electronics and a shaking sleep-deprived hand doesn’t go well together. However, with a good bunch of patience and maybe a bit of luck, I managed. We got it all set, tested and arranged for the next day.

During that day of setting up it turned out that we had been picked to go on the radio to talk about out project and how we ended up attending eFactor. That put us in a slightly awkward position as our project was the only one to have the primary focus on mechanics rather than electrocnis despite the competition in wearable electronics, so I guess we weren’t representing it too well. Either way, it ended up being Andreas, Peter and Lauge who went on air at 9 am on the day of the competition, to talk about the project. Later on we realised that it had actually inspired quite a few people to come and see the competition (It was open for everyone to drop by and have a look at the different projects)

When the competition started, each team had to do a presentation on stage, presenting some slides and explaining their idea. Afterwards the judges would come to the teams stall where the project was setup and could be presented. Then some questions and done. Lauge and Peter presented the project and Andreas and I did the demonstration for the judges afterward.
It so happened that an english presentation wasn’t mandatory so Lauge and Peter had decided to do it in Danish to stay safe. However, it turned out that the organizer would like to have a recording of our presentation in english as well so we arranged for a second presentation by the stall. It so happened that my grandmother, who is the initial inspiration for this project and who had been invited to come, walked in the door on the instant that the organizer came by with the camera. That turned into an arrangement where she sat at the table at our stall while Andreas and I presented the project and answered a few questions that the organizer had.

The video turned out pretty well and gives a great overview of the project while demonstrating the prototype. Check it out:

 

In the end all of the projects were evaluated and we won the popularity prize along with 15.000,- DKK.
While not winning the grand prize I dare say that we were all very honoured and really happy about our prize and to get the recognition, despite having entered a competition on a topic that we barely knew about beforehand.

We had fun, learned a lot and eventually had a working prototype of an EMG-controlled soft-robotic exoskeleton.

 

Advertisement

Muscle-triggered dancing crab: Biometrics, hell yeah!

A few days ago I finally received a muscle sensor which I’ve been wanting to buy since forever – this one: https://www.sparkfun.com/products/11776. 4 days seemed like an infinity to wait playing around with it but tonight I finally got the chance.

What I found the most exciting was reliability of the signal. How hard it would be to measure the tension of a muscle and whether I’d need a whole bunch of filters to get anything sensible out of it. I had no idea what to expect when I bought it apart from having seen a few examples of it’s use online.

Turned out that it was really quite easy to control. I added a moving average filter with 10 samples and instantly had a signal I could use to control… in this case a servo with a crab on top.

I applied the electrodes on the flexor pollicis brevis – the muscle that pulls your thump towards your pinky -, set up a few conditions for the signal on the Arduino and BAM! The crab was dancing 🙂
By pushing my thump agains the other fingers, I tense the muscle and depending on the amount of tension I can make it rotate slower or faster. As for the conditions I set up a minimum signal threshold after which it would start moving. Each time It’d go beyond that threshold it would go in one direction, speeding up depending on the tension. When the signal goes below the threshold it reverses direction, so it’d go the other way when I tighten again.
The fact that the crab may seem to follow my hand at certain points, could be a bit misleading as I’m merely playing around and aiming it by tensing/relaxing the muscle accordingly. All motion is muscle-controlled 🙂

Oh, and sorry about the sound. I happened to be listening to Radiohead while recording and now Youtube recognized it and claimed that it was copyrighted, so they offered a way of removing only the song from the video. Didn’t really work, but as long as it keeps my back clear I’m good.

[In case somebody is wondering about the thing attached to the servo, it is a crab made of chestnuts:]

Kindly donated by Rebekka

Kindly donated by Rebekka

Useless in function

Yet rather entertaining if you consider it a challenge.

My latest creation is inspired by ‘The Most Useless Machine, Ever!’ as seen on youtube.

Having had this kind of machine on my todo list for a while and being invited to a wedding where I knew the newlyweds would appreciate such device I decided to go for it.

It’s a silly device and utterly useless but it was most certainly fun to build and I learned quite a few things from it, despite it’s simplicity.
First and foremost I got to feel a bit more confident in constructing something out of wood/metal to hold different electronic components. That’s one thing I’ve been a bit anxious about as it has been ages since I made anything from scratch. Secondly I had to open up a Servo motor and resolder a few wires to enable a different type of control and as a result of that, I now know how I can hack it further to get actual position feedback directly from a standard servo. This is something I only thought possible (or at least with my skills) through using servos with such a feature already built in, like the Robotis Dynamixel servos that I’ve been using before, but being able to get position feedback from normal (And cheap) servos definitely opens up for some goodies 🙂

A how-to on creating one of these can be found everyone on the web so I wont explain the specifics.
Only thing different from theirs to mine is that I used this wooden hand carved box from ebay and the brass rim covering the cut through the lid was only put there to cover up for my lacking wood-cutting skills. Wasn’t planned for initially 🙂

Here are a few stills:

I had quite a good time shaping the finger as well but I forgot to document it by stills before I handed over the present, so you’ll have to check it out in the video instead, which is here: